V-NEX

ХИМИЧЕСКИЙ АНКЕР НА ВИНИЛЭФИРНОЙ СМОЛЕ БЕЗ СТИРОЛА

- СЕ опция 1 для бетона с трещинами и без трещин
- Сертифицированное использование для резьбовых и арматурных стержней с последующей установкой в соответствии с ETA-20/0363 Опция 1
- Категория сейсмостойкости С2 (М12-М16)
- Соответствует требованиям LEED®, IEQ Credit 4.1
- Класс А+ выделения органических летучих веществ (ЛОС) в жилых зонах
- Сертифицированное использование для кладки на твердых и полутвердых материалах (категория использования b, c, d)
- Сухой, влажный бетон или бетон с заглубленными отверстиями
- Сертифицирован для использования на автоклавных газобетонных блоках (ААС)

APT. N°	формат	шт.
	[мл]	
VNEX300	300	12
VNEX420	420	12

Срок годности с даты производства: 12 месяцев для 300 мл, 18 месяцев для 420 мл. Температура хранения в диапазоне от +5 до 25 °C. Носик-насадка входит в упаковку.

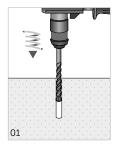
ДОСТУПНЫЕ ПРИНАДЛЕЖНОСТИ

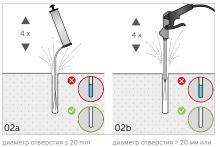
APT. N°	описание	шт.
STING	запасная насадка для картриджей по 300 и 420 мл	1

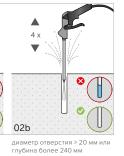
ПИСТОЛЕТ ДЛЯ ХИМИЧЕСКИХ АНКЕРОВ

FLY LITEПРОФЕССИОНАЛЬНЫЙ ПИСТОЛЕТ ДЛЯ ТУБ ПО 310 мл

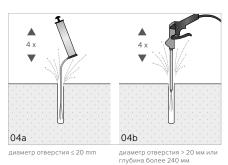
INA
РЕЗЬБОВАЯ ШПИЛЬКА
КЛАСС 5.8 С ГАЙКОЙ И
ШАЙБОЙ

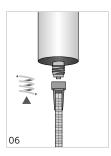

IHM | IHP

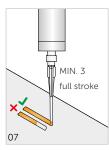

ВТУЛКИ ДЛЯ ПЕРФОРИРОВАННЫХ ЭЛЕМЕНТОВ



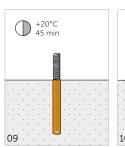
монтаж

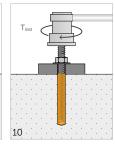

БЕТОН

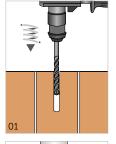


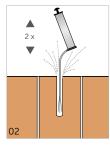


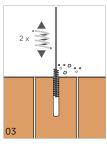
03

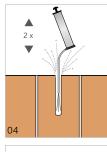


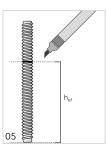

05

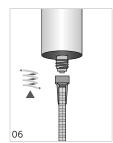


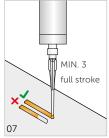


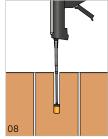


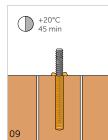


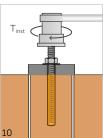

КЛАДКА ИЗ ПОЛНОТЕЛОГО КИРПИЧА

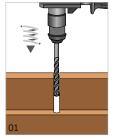


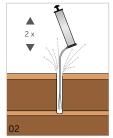


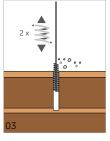


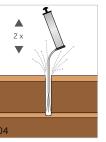


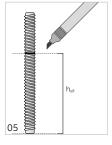


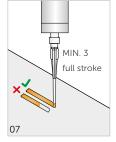


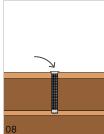


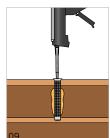


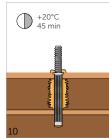


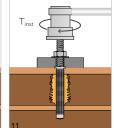

КЛАДКА ИЗ ПУСТОТЕЛОГО КИРПИЧА





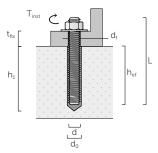


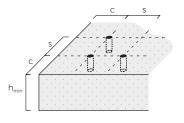




УСТАНОВКА

d диаметр анкера


 $\begin{array}{ll} {\bf d_0} & & {\rm диаметр} \ {\rm отверстия} \ {\rm B} \ {\rm бетонном} \ {\rm основаниu} \\ \\ {\bf h_{ef,min}} & & {\rm фактическая} \ {\rm глубина} \ {\rm анкерного} \ {\rm крепления} \\ \\ {\bf d_f} & & {\rm диаметр} \ {\rm отверстия} \ {\rm B} \ {\rm закрепляемом} \ {\rm элементe} \end{array}$


T_{inst} максимальный момент затяжки

L длина анкер

 $\mathbf{t}_{\mathsf{fix}}$ максимальная толщина прикрепляемой плиты

h₁ минимальная глубина отверстия

d	[MM]	M8	M10	M12	M16	M20	M24
d _o	[MM]	10	12	14	18	24	28
h _{ef,min}	[MM]	60	60	70	80	90	96
h _{ef,max}	[MM]	160	200	240	320	400	480
d _f	[MM]	9	12	14	18	22	26
T _{inst}	[Нм]	10	20	40	80	120	160

			M8	M10	M12	M16	M20	M24
Минимальное межосевое расстояние	S _{min}	[MM]	40	50	60	80	100	120
Минимальный отступ от края	C _{min}	[MM]	40	50	60	80	100	120
Минимальная толщина бетонного основания	h _{min}	[MM]	$h_{ef} + 30 \ge 100 \text{ mm}$ $h_{ef} + 20 \ge 100 \text{ mm}$		$h_{ef} + 2 d_0$			

Для межосевых расстояний и отступов меньше критических будет иметь место уменьшение прочности в силу параметров установки.

ВРЕМЯ И ТЕМПЕРАТУРА УКЛАДКИ

температура основания	температура картриджа	время схватывания	ожидание приложения нагрузки
-5 ÷ -1 °C(*)		90 мин	6 ч
0 ÷ +4 °C		45 мин	3 ч
+5 ÷ +9 °C		25 мин	2 ч
+10 ÷ +14 °C		20 мин	100 мин
+15 ÷ +19 °C	+5 ÷ +40	15 мин	80 мин
+20 ÷ +29 °C		6 мин	45 мин
+30 ÷ +34 °C		4 мин	25 мин
+35 ÷ +39 °C		2 мин	20 мин

^(*)Температуры, недопустимые для кирпичной кладки.

СТАТИЧЕСКИЕ ХАРАКТЕРИСТИЧЕСКИЕ ВЕЛИЧИНЫ

Действительны для одной резьбовой шпильки (типа INA или MGS) при установке в бетон C20/25 с редкой арматурой, рассматривая расстояние между элементами, расстояние до края и толщину бетонного основания в качестве неограничивающих параметров.

БЕТОН БЕЗ ТРЕЩИН⁽¹⁾

РАСТЯЖЕНИЕ

шпилька	h _{ef,standard}	$N_{Rk,p}^{(2)}[kN]$				h _{ef,max}	N _{Rk,s} (3) [kN]				
	[MM]	сталь 5.8	γ _{Mp}	сталь 8.8	γ _{Mp}	[MM]	сталь 5.8	γ_{Ms}	сталь 8.8	γ_{Ms}	
M8	80	17,1	17,1 17,1 160 18		29						
M10	90	22,6		22,6	33,2		200	29		46	
M12	110	33,2				240	42		67		
M16	128	51,5	1,8	51,5	1,8	320	79	1,5	125	1,5	
M20	170	85,5		85,5		400	123		196		
M24	210	126,7		126,7		480	177		282		

PE3KA

шпилька	h _{ef}	V _{Rk,s} (3) [kN]					
	[MM]	сталь 5.8	γ_{Ms}	сталь 8.8	γ_{Ms}		
M8	≥60	11		15			
M10	≥60	17		23			
M12	≥70	25	105	34	1.05		
M16	≥80	47	1,25	63	1,25		
M20	≥100	74		98			
M24	≥125	106		141			

коэффициент увеличения для $N_{Rk,p}^{(4)}$				
	C25/30	1,04		
	C30/37	1,08		
Ψ_{c}	C40/50	1,15		
	C50/60	1,19		

ПРИМЕЧАНИЕ

- 🕦 Для расчета анкеров по кирпичной кладке или для использования шпилек с улучшенной адгезией следует ознакомиться с содержанием документа ЕТА по
- (2) Комбинированное разрушение при отрыве с разрушением бетона.
- (3) Способ разрушения стали.
 (4) Коэффициент увеличения для прочности на отрыв (за исключением разрушения стали) действителен в случае бетона без трещин.

ОСНОВНЫЕ ПРИНЦИПЫ

- Характеристические величины рассчитаны в соответствии с ЕТА-20/0363.
- Расчетные значения получены на основании нормативных значений следующим образом: $R_d = R_K/\gamma_M$. Коэффициенты γ_M приведены в таблице исходя из способа разрушения и в соответствии с паспортами изделий.
- Для расчета анкеров с уменьшенным межосевым расстоянием, располагающихся близко к краю, или для крепления по бетону большего класса прочности или меньшей толщины или с часто уложенной арматурой следует ознакомиться с документом ETA.

СТАТИЧЕСКИЕ ХАРАКТЕРИСТИЧЕСКИЕ ВЕЛИЧИНЫ

Действительны для одной резьбовой шпильки (типа INA или MGS) при установке в бетон C20/25 с редкой арматурой, рассматривая расстояние между элементами, расстояние до края и толщину бетонного основания в качестве неограничивающих параметров.

БЕТОН С ТРЕЩИНАМИ(1)

РАСТЯЖЕНИЕ

шпилька	h _{ef,standard}	N _{Rk,p} ⁽²⁾ [kN]				h _{ef,max}	$N_{Rk,s}/N_{Rk,p}[kN]$			
	[MM]	сталь 5.8	γ_{Mp}	сталь 8.8	γ _{Mp}	[MM]	сталь 5.8	γ_{Ms}	сталь 8.8	γ_{Ms}
M8	80	9,0		9,0		160	18,0	1,5(3)	18,1	
M10	90	12,7	4.0	12,7	1.0	200	28,3		28,3	4.0/2)
M12	110	18,7	1,8	18,7	1,8	240	40,7	1,8(2)	40,7	1,8(2)
M16	128	29,0		29,0		320	72,4		72,4	

PE3KA

шпилька	h _{ef,standard}	$V_{Rk,s}$ [kN]					
	[MM]	сталь 5.8	γ_{Ms}	сталь 8.8	γ_{Ms}		
M8	80	11		15			
M10	90	17		23	1,25(3)		
M12	110	25	1,25 ⁽³⁾	34			
M16	128	47		58	1,8(5)		

коэффициент увеличения для $N_{Rk,p}^{\ (4)}$					
	C25/30	1,02			
	C30/37	1,04			
Ψ_{c}	C40/50	107			
	C50/60	1,09			

- (I) Для использования стержней с улучшенной адгезией обращайтесь к документу ETA по данной теме.
- $^{(2)}$ Комбинированное разрушение при отрыве с разрушением бетона.
- (3) Способ разрушения стали.
 (4) Коэффициент увеличения для прочности на отрыв (за исключением разрушения стали) действителен в случае бетона с трещинами.

ОСНОВНЫЕ ПРИНЦИПЫ

- Характеристические величины рассчитаны в соответствии с ЕТА-20/0363.
- Расчетные значения получены на основании нормативных значений следующим образом: $R_d = R_L/\gamma_M$. Коэффициенты γ_M приведены в таблице исходя из способа разрушения и в соответствии с паспортами изделий.
- Для расчета анкеров с уменьшенным межосевым расстоянием, располагающихся близко к краю, или для крепления по бетону большего класса прочности или меньшей толщины или с часто уложенной арматурой следует ознакомиться с документом ЕТА.
- По вопросу разработки анкеров, выдерживающих сейсмические нагрузки, следует ознакомиться с документом ЕТА, а также с содержанием Технического отчета EN 1992-4.
- Для спецификации диаметров, охватываемых различными типами сертификации (бетон с трещинами, без трещин, сейсмостойкость), обратитесь к содержанию документа ЕТА по данной теме.

