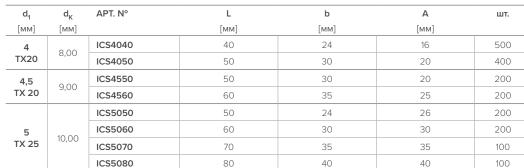
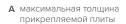

ICS

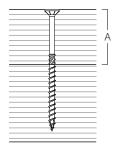
ШУРУП С ПОТАЙНОЙ ГОЛОВКОЙ

- Благодаря наконечнику 3 THORNS сократились минимальные расстояния установки. Можно использовать больше шурупов на меньшем пространстве и шурупы большего размера на элементах меньшего размера
- Новый наконечник, специальная асимметричная зонтичная резьба, удлиненная расточная фреза и режущие ребра в подголовнике обеспечивают более высокое сопротивление шурупа при кручении и надежное завинчивание
- Аустенитная нержавеющая сталь А2. С высокой коррозионной стойкостью
- Пригодна для наружного применения на расстоянии до 1 км от моря в классе C4 и на большей части кислотной древесины класса T4
- Для применения на деревянных досках плотностью <470 кг/м³ (без предварительного сверления) и <620 кг/м³ (с предварительным сверлением)

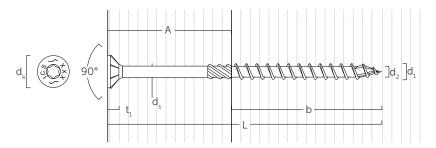
ОКРУЖАЮЩАЯ СРЕДА







МАТЕРИАЛ



ГЕОМЕТРИЯ И МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

номинальный диаметр	d ₁	[MM]	4	4,5	5
диаметр головки	d_K	[MM]	8,00	9,00	10,00
диаметр наконечника	d_2	[MM]	2,55	2,80	3,40
диаметр стержня	d _S	[MM]	2,75	3,15	3,65
толщина головки	t ₁	[MM]	3,80	4,25	4,65
диаметр предварительного отверстия ⁽¹⁾	d_V	[MM]	2,5	3,0	3,0
характеристический момент пластической деформации	$M_{y,k}$	[Нм]	1,9	2,8	4,4
характеристическая прочность при выдергивании	f _{ax,k}	[H/мм ²]	17,1	17,2	17,9
принятая плотность	ρ_{a}	[KF/M ³]	410	410	440
характеристическая прочность при выдергивании головки	f _{head,k}	[H/mm ²]	13,4	18,0	17,6
принятая плотность	ρ_{a}	[KF/M ³]	390	440	440
характеристическая прочность на разрыв	f _{tens,k}	[ĸH]	3,2	4,4	5

 $^{^{(1)}}$ Предварительное отверстие для хвойных пород дерева (softwood).

СТАТИЧЕСКИЕ ВЕЛИЧИНЫ

				РЕЗКА	РАСТЯЖЕНИЕ		
	геоме	еометрия		дерево-дерево	выдергивание полнонарезного ⁽¹⁾	ие полнонарезного ⁽¹⁾ погружение головки ⁽²⁾	
	d ₁		À				
d ₁	L	b	А	R _{V,k}	$R_{ax,k}$	$R_{head,k}$	
[MM]	[MM]	[MM]	[MM]	[ĸH]	[ĸH]	[ĸH]	
4	40	24	16	0,69	1,56	0,85	
	50	30	20	0,76	1,95	0,85	
4,5	50	30	20	0,95	2,21	1,31	
	60	35	25	1,04	2,58	1,31	
5	50	24	26	1,21	1,93	1,58	
	60	30	30	1,35	2,41	1,58	
	70	35	35	1,35	2,82	1,58	
	80	40	40	1,35	3,22	1,58	

ПРИМЕЧАНИЕ

- (1) Осевое сопротивление резьбы выдергиванию было рассчитано для случая, когда угол ϵ между волокнами и соединительным элементом составляет 90°, а длина глубина ввинчивания равна b.
- (2) Сопротивление протаскиванию головки по оси рассчитывалось для деревянных элементов.

ОСНОВНЫЕ ПРИНЦИПЫ

- Характеристические величины согласно стандарту EN 1995:2014.
- Расчетные значения получены на основании нормативных значений следующим образом:

$$R_d = \frac{R_k \cdot k_{mod}}{v_{ij}}$$

Коэффициенты γ_M и k_{mod} должны приниматься в соответствии с действующими правилами, примененными для выполнения расчета. Механическая прочность и геометрия шурупа в соответствии с маркировкой СЕ и стандартом EN 14592.

- При расчете учитывается объемная масса деревянных элементов, равный ρ_k = 385 кг/м³.
- Для расчета значений принимается, что резьбовая часть полностью завинчивается в дерево.
- Определение размеров и контроль деревянных элементов должны производиться отдельно. Характеристическое сопротивление сдвигу рассчитывается для винтов, введенных без предварительного сверления. Шурупы должны вкручиваться с учётом минимально допустимого расстояния.