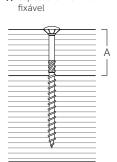
BFO

L

b


PARAFUSO DE CABEÇA REDONDA E HASTE REFORÇADA

- Cabeça de embeber com geometria a gota e curvatura superficial, para uma estética agradável e uma aderência sólida com a ponteira
- Haste de diâmetro aumentado e resistência à torção elevada para um aperto forte e seguro
- Em aço inoxidável austenítico A2 | AISI 305. Oferece uma elevada resistência à corrosão
- Adequado para aplicações no exterior até 1 km do mar e na maioria das madeiras ácidas da classe T4

A espessura máxima

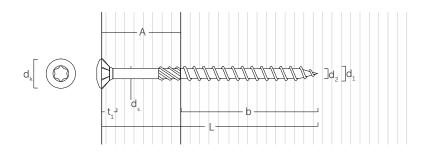
AMBIENTE

MATERIAL

d ₁	d _K	CÓDIGO	L	b	Α	pçs	
[mm]	[mm]		[mm]	[mm]	[mm]		
	8,00	BFO550	50	30	20	200	
5 TX 25		8,00	BFO560	60	36	24	200
		BFO570	70	42	28	100	

BFO BUCKET

PARAFUSOS BFO EM BALDE 1000


• Os parafusos também podem ser utilizados em terraços

d ₁ [mm]	d _K [mm]	CÓDIGO	L [mm]	b [mm]	pçs
5	8.00	BFOBUC550	50	30	1000
TX 25	8,00	BFOBUC560	60	36	1000

GEOMETRIA E CARACTERÍSTICAS MECÂNICAS

diâmetro nominal	d_1	[mm]	5,3
diâmetro da cabeça	d _K	[mm]	8,00
diâmetro do núcleo	d ₂	[mm]	3,90
diâmetro da haste	d_S	[mm]	4,10
espessura da cabeça	t_1	[mm]	3,65
diâmetro do pré-furo ⁽¹⁾	d _V	[mm]	3,5
momento de cedência característico	$M_{y,k}$	[Nm]	9,7
parâmetro característico de resistência à extração	$f_{ax,k}$	[N/mm ²]	16,6
densidade associada	ρ_{a}	[kg/m ³]	350
parâmetro característico de penetração da cabeça	f _{head,k}	[N/mm ²]	21,4
densidade associada	ρ_{a}	[kg/m³]	350
resistência característica à tração	f _{tens,k}	[kN]	7,3

⁽¹⁾ Em materiais de densidade elevada, aconselha-se a fazer um pré-furo em função da espécie lenhosa.

VALORES ESTÁTICOS

				COI	RTE	TRAÇÃO		
geometria		madeira-madeira sem pré-furo	madeira-madeira com pré-furo	extração da rosca ⁽¹⁾	penetração da cabeça ⁽²⁾			
	d ₁					191		
d_1	L	b	Α	R _{V,k}	R _{V,k}	R _{ax,k}	R _{head,k}	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	50	30	20	1,39	1,80	2,88	1,58	
5	60	36	30	1,55	1,92	3,46	1,58	
	70	42	40	1,64	2,06	4,03	1,58	

🗓 A resistência axial à extração da rosca foi avaliada considerando-se um ângulo ε de 90° entre as fibras e o conector e para um comprimento de cravação igual a b.

(2) A resistência axial de penetração da cabeça foi avaliada sobre elemento de madeira.

PRINCÍPIOS GERAIS

- Os valores característicos são conforme a norma EN 1995:2014.
- Os valores de projeto são obtidos a partir dos valores característicos, desta forma:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

- Os coeficientes γ_M e k_{mod} devem ser considerados em função da norma vigente utilizada para o cálculo. Valores de resistência mecânica e geometria dos parafusos de acordo com a marcação CE em conformidade com a norma EN 14592.
- Em fase de cálculo, considerou-se uma massa volúmica dos elementos de madeira equivalente a ρ_k = 420 kg/m³.
- Os valores foram calculados considerando-se a parte roscada inserida completamente no elemento de madeira. A dimensão e a verificação dos elementos de madeira e de aço devem ser feitas à parte.
- O posicionamento dos parafusos deve ser efetuado dentro das distâncias mínimas.