V-NEX

ANCORANTE QUÍMICO À BASE DE VINILÉSTER SEM ESTIRENO

- CE opção 1 para betão fissurado e não fissurado
- Utilização certificada para barras roscadas e ferros de armadura pós-instalados de acordo com a ETA-20/0363 Opção 1
- Categoria de prestação sísmica C2 (M12-M16)
- Conforme os requisitos LEED®, IEQ Credit 4.1
- Classe A+ de emissão de compostos orgânicos voláteis (VOC) em ambientes habitados
- Uso certificado para alvenaria em materiais cheios e semicheios (categoria de uso b, c, d)
- Betão seco, molhado ou com furos submersos
- Certificado para uso em blocos de betão celular autoclavado (AAC)

CÓDIGO	formato [mL]	pçs
VNEX300	300	12
VNEX420	420	12

Vencimento a partir da data de produção: 12 meses para 300 mL, 18 meses para 420 mL. Temperatura de armazenagem compreendida entre +5 e 25 °C. Bico incluído na embalagem.

ACESSÓRIOS DISPONÍVEIS

CÓDIGO	descrição	pçs
STING	bico de substituição para cartuchos de 300 e 420 mL	1

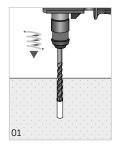
FLY HARD
PISTOLA PARA
ANCORANTES

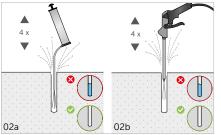
FLY LITE
PISTOLA PROFISSIONAL
PARA CARTUCHOS DE
310 mL

INA
BARRA ROSCADA CL. 5.8
COM PORCA E ANILHA

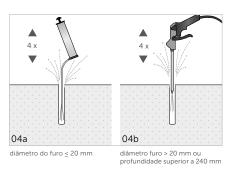
IHM | IHP

BUCHAS PARA

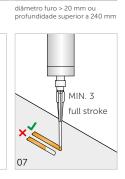

MATERIAIS CAVERNOSOS

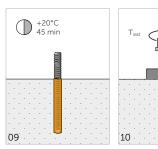


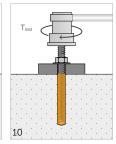
EQUIPAMENTO


MONTAGEM

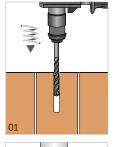
BETÃO

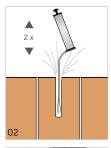


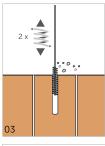


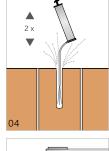


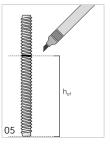
06

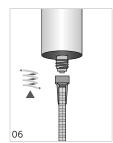


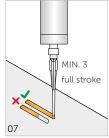


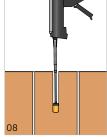


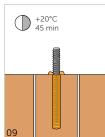


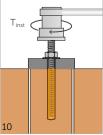

ALVENARIA PLENA

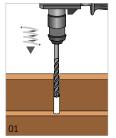


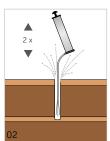


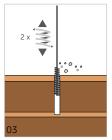


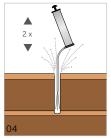




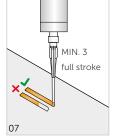


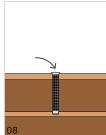


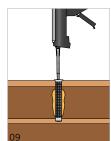


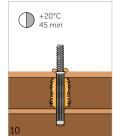


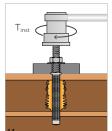

ALVENARIA FURADA

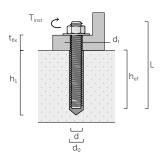


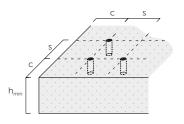











HOLZ TECHNIC

INSTALAÇÃO

 $\begin{array}{ll} \textbf{d} & \text{diâmetro do ancorante} \\ \textbf{d}_0 & \text{diâmetro do furo no suporte de betão} \\ \textbf{h}_{\textbf{ef,min}} & \text{profundidade efectiva de ancoragem} \\ \textbf{d}_f & \text{diâmetro do furo no elemento a fixar} \\ \textbf{T}_{\text{inst}} & \text{torque de aperto máximo} \end{array}$

 $\begin{array}{ll} \textbf{T}_{\text{inst}} & \text{torque de aperto máximo} \\ \textbf{L} & \text{comprimento do ancorante} \\ \textbf{t}_{\text{fix}} & \text{espessura máxima fixável} \\ \textbf{h}_{1} & \text{profundidade mínima do furo} \end{array}$

d	[mm]	M8	M10	M12	M16	M20	M24
d ₀	[mm]	10	12	14	18	24	28
h _{ef,min}	[mm]	60	60	70	80	90	96
h _{ef,max}	[mm]	160	200	240	320	400	480
d_f	[mm]	9	12	14	18	22	26
T _{inst}	[Nm]	10	20	40	80	120	160

			M8	M10	M12	M16	M20	M24
Entre-eixo mínimo	S _{min}	[mm]	40	50	60	80	100	120
Distância mínima da borda	C _{min}	[mm]	40	50	60	80	100	120
Espessura mínima do suporte de betão	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm			h _{ef} + 2 d ₀		

Para entre-eixos e distâncias inferiores àqueles críticos, haverá reduções nos valores de resistência em razão dos parâmetros de instalação.

TEMPOS E TEMPERATURAS DE MONTAGEM

temperatura do suporte	temperatura do cartucho	tempo de manufacturabilidade	espera de aplicação da carga
-5 ÷ -1 °C(*)		90 min	6 h
0 ÷ +4 °C		45 min	3 h
+5 ÷ +9 ℃		25 min	2 h
+10 ÷ +14 °C	+5 ÷ +40	20 min	100 min
+15 ÷ +19 °C	+5 - +40	15 min	80 min
+20 ÷ +29 °C		6 min	45 min
+30 ÷ +34 °C		4 min	25 min
+35 ÷ +39 °C		2 min	20 min

^(*)Temperatura não permitida para alvenaria.

VALORES ESTÁTICOS CARACTERÍSTICOS

Válidos para uma única barra roscada (tipo INA ou MGS) quando instaladas em betão C20/25 com armadura esparsa considerando o espaçamento, a distância da borda e a espessura do betão de base como parâmetros não limitantes.

BETÃO NÃO FISSURADO(1)

TRAÇÃO

barra	h _{ef,standard}		N _{Rk,p} ⁽²⁾ [kN]			h _{ef,max}		N _{Rk,s} (³⁾ [kN]		
	[mm]	aço 5.8	Y _{Мр}	aço 8.8	Y _{Мр}	[mm]	aço 5.8	Υ _{Ms}	aço 8.8	Υ _{Ms}	
M8	80	17,1		17,1		160	18		29		
M10	90	22,6		22,6		200	29		46		
M12	110	33,2		33,2		1.0	240	42	1 -	67	1.5
M16	128	51,5	1,8	51,5	1,8	320	79	1,5	125	1,5	
M20	170	85,5	85,5	400	123		196				
M24	210	126,7		126,7		480	177		282		

CORTE

barra	h _{ef}	V _{Rk,s} ⁽³⁾ [kN]				
	[mm]	aço 5.8	γ_{Ms}	aço 8.8	γ_{Ms}	
M8	≥60	11		15		
M10	≥60	17		23	1,25	
M12	≥70	25	1.25	34		
M16	≥80	47	1,25	63		
M20	≥100	74		98		
M24	≥125	106		141		

fator de incremento para N _{Rk,p} (4)					
	C25/30	1,04			
	C30/37	1,08			
Ψ_{c}	C40/50	1,15			
	C50/60	1,19			

NOTAS

- (1) Para o cálculo de ancorantes sobre alvenaria ou para a utilização de barras de aderência melhorada, ver documento ETA de referência
- (2) Rutura combinada pull-out e falha do betão. (3) Modalidade de rutura do material de aço.
- (4) Fator de incremento para a resistência à tração (excluindo rutura do material em aço), válido na presença de betão não fissurado.

PRINCÍPIOS GERAIS

- Os valores característicos são calculados de acordo com ETA-20/0363.
- Os valores de projeto são obtidos a partir dos valores característicos, desta forma: R_d = R_k/γ_M. Os coeficientes γ_M são apresentados na tabela em função do modo de rutura e de acordo com os certificados de produto.
- Para o cálculo de ancorantes com entre-eixos reduzidos, próximos à borda ou para a fixação sobre betão de classe de resistência superior ou de espessura reduzida ou com armadura densa, ver o documento ETA.

VALORES ESTÁTICOS CARACTERÍSTICOS

Válidos para uma única barra roscada (tipo INA ou MGS) quando instaladas em betão C20/25 com armadura esparsa considerando o espaçamento, a distância da borda e a espessura do betão de base como parâmetros não limitantes.

BETÃO FISSURADO(1)

TRAÇÃO

barra	h _{ef,standard}	N _{Rk,p} ⁽²⁾ [kN]				h _{ef,max}	$N_{Rk,s}/N_{Rk,p}[kN]$				
	[mm]	aço 5.8	Y _{Мр}	aço 8.8	Υ _{Mp}	[mm]	aço 5.8	Υ _{Ms}	aço 8.8	Υ _{Ms}	
M8	80	9,0		9,0		160	18,0	1,5(3)	18,1		
M10	90	12,7		12,7		4.0	200	28,3		28,3	4.0(2)
M12	110	18,7	1,8	18,7	1,8	240	40,7	1,8(2)	40,7	1,8 ⁽²⁾	
M16	128	29,0		29,0		320	72,4		72,4		

CORTE

barra	h _{ef,standard}	V _{Rk,s} [kN]				
	[mm]	aço 5.8	γ_{Ms}	aço 8.8	γ_{Ms}	
M8	80	11		15		
M10	90	17	1 25(3)	23	1,25 ⁽³⁾	
M12	110	25	1,25 ⁽³⁾	34		
M16	128	47		58	1,8(5)	

fator de incremento para $N_{Rk,p}^{(4)}$					
	C25/30	1,02			
	C30/37	1,04			
Ψ_{c}	C40/50	107			
	C50/60	1,09			

- (1) Para a utilização de barras com aderência aumentada, consultar o documento ETA de referência.
- (2) Rutura combinada pull-out e falha do betão. (3) Modalidade de rutura do material de aço.
- (4) Fator de incremento para a resistência à tração (excluindo rutura do material em aço), válido na presença de betão fissurado.
- (5) Modo de rotura por destacamento (pry-out).

PRINCÍPIOS GERAIS

- Os valores característicos são calculados de acordo com ETA-20/0363.
- Os valores de projeto são obtidos a partir dos valores característicos, desta forma: $R_d = R_k/\gamma_M$. Os coeficientes γ_M são apresentados na tabela em função do modo de rutura e de acordo com os certificados de produto.
- Para o cálculo de ancorantes com entre-eixos reduzidos, próximos à borda ou para a fixação sobre betão de classe de resistência superior ou de espessura reduzida ou com armadura densa, ver o documento ETA.
- Para a projetação de ancorantes submetidos a uma carga sísmica, consultar o documento de referência ETA e as indicações da EN 1992-4.
 Para mais detalhes sobre os diâmetros cobertos por vários tipos de certificação (betão fissurado, não fissurado, aplicação sísmica), ver os documentos ETA de referência.

