H-NEX



ANCORANTE QUÍMICO HÍBRIDO DE ALTAS PRESTAÇÕES

- Resina à base de uretano-metacrilato
- CE opção 1 para betão fissurado e não fissurado
- Categoria de prestação sísmica C2 (M12-M24)
- Certificação de resistência ao fogo F120
- Conforme os requisitos LEED® v4.1 BETA
- Classe A+ de emissão de compostos orgânicos voláteis (VOC) em ambientes habitados
- Ideal para ancoragens extrapesadas e barras de armadura pós-instaladas
- Excelente comportamento viscoso a longo prazo
- Betão seco ou húmido
- Betão com furos submersos
- Aplicação a partir de baixo permitida
- Instalação certificada também com ponta oca aspirante

CÓDIGO	formato [mL]	pçs
HNEX280	280	12
HNEX420	420	12

Vencimento a partir da data de produção: 18 meses. Temperatura de armazenagem compreendida entre +5 e 25 °C. Bico incluído na embalagem.

ACESSÓRIOS DISPONÍVEIS

CÓDIGO	descrição	pçs
STING	bico de substituição para cartuchos de 280 e 420 mL	1

ANCORANTES

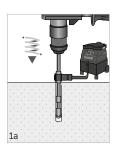
FLY LITE
PISTOLA PROFISSIONAL
PARA CARTUCHOS DE
310 mL

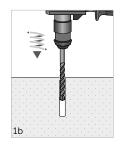
INA BARRA ROSCADA CL. 5.8 COM PORCA E ANILHA

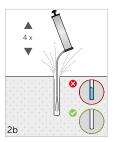
IHM | IHP

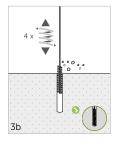
BUCHAS PARA

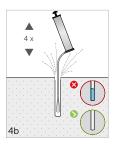
MATERIAIS CAVERNOSOS

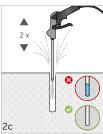

MENTO COBER

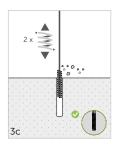

MONTAGEM

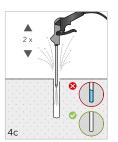

Realização do furo: três possibilidades de instalação diferentes.


a. MONTAGEM COM PONTA OCA ASPIRANTE (HDE)

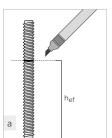


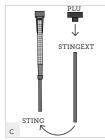


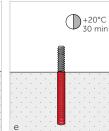


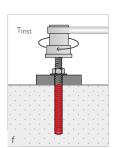


b. MONTAGEM COM HP + BRUH






Instalação da barra:

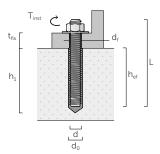


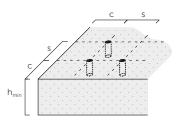
TEMPOS E TEMPERATURAS DE MONTAGEM

tananavatuwa da aunavta	toward do manufacture bilidada	espera de aplicação da carga			
temperatura do suporte	tempo de manufacturabilidade	suporte enxuto	suporte húmido		
-5 ÷ -1 °C	50 min	5 h	10 h		
0 ÷ +4 °C	25 min	3,5 h	7 h		
+5 ÷ +9 ℃	15 min	2 h	4 h		
+10 ÷ +14 °C	10 min	1 h	2 h		
+15 ÷ +19 °C	6 min	40 min	80 min		
+20 ÷ +29 °C	3 min	30 min	60 min		
+30 ÷ +40 °C	2 min	30 min	60 min		

Temperatura de armazenamento do cartucho +5 - +40 °C.

INSTALAÇÃO


CARATERÍSTICAS GEOMÉTRICAS DE MONTAGEM EM BETÃO

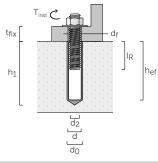

BARRAS ROSCADAS (TIPO INA O MGS)

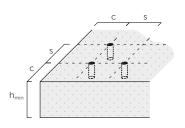
d diâmetro do ancorante

diâmetro do furo no suporte de betão d_0 $\boldsymbol{h}_{\text{ef,min}}$ profundidade efectiva de ancoragem diâmetro do furo no elemento a fixar d_{f}

 $\mathsf{T}_{\mathsf{inst}}$ torque de aperto máximo L comprimento do ancorante espessura máxima fixável t_{fix} h_1 profundidade mínima do furo

d	[mm]	M8	M10	M12	M16	M20	M24	M27	M30
d ₀	[mm]	10	12	14	18	22	28	30	35
h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
d _f	[mm]	9	12	14	18	22	26	30	33
T _{inst}	[Nm]	10	20	40	60	100	170	250	300


			M8	M10	M12	M16	M20	M24	M27	M30
Entre-eixo mínimo	S _{min}	[mm]	40	50	60	75	95	115	125	140
Distância mínima da borda	c _{min}	[mm]	35	40	45	50	60	65	75	80
Espessura mínima do suporte de betão	h _{min}	[mm]	h _{ef} -	+ 30 ≥ 100	mm			$h_{ef} + 2 d_0$		


Para entre-eixos e distâncias inferiores àqueles críticos, haverá reduções nos valores de resistência em razão dos parâmetros de instalação.

BUCHA COM ROSCAGEM MÉTRICA INTERNA (TIPO IR)

 d_2 diâmetro da barra roscada interna d diâmetro do elemento ancorado em betão dο diâmetro do furo no suporte de betão $\boldsymbol{h}_{\text{ef,min}}$ profundidade efectiva de ancoragem d_f diâmetro do furo no elemento a fixar $\mathsf{T}_{\mathsf{inst}}$ torque de aperto máximo espessura máxima fixável t_{fix} h_1

profundidade mínima do furo comprimento da barra roscada interna

		IR-M8	IR-M10	IR-M12	IR-M16
d ₂	[mm]	8	10	12	16
d	[mm]	12	16	20	24
d ₀	[mm]	14	18	22	28
h _{ef,min}	[mm]	70	80	90	96
h _{ef,max}	[Nm]	240	320	400	480
d _f	[mm]	9	12	14	18
T _{inst}	[mm]	10	20	40	60
I _{R,min}	[mm]	8	10	12	16
I _{R,max}	[mm]	20	25	30	32

			IR-M8	IR-M10	IR-M12	IR-M16
Entre-eixo mínimo	s _{min}	[mm]	60	75	95	115
Distância mínima da borda	c _{min}	[mm]	45	50	60	65
Espessura mínima do suporte de betão	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm		$h_{ef} + 2 d_0$	

Para entre-eixos e distâncias inferiores àqueles críticos, haverá reduções nos valores de resistência em razão dos parâmetros de instalação.

Classificação componente A e componente B: Skin Sens. 1. May cause an allergic skin reaction.

VALORES ESTÁTICOS CARACTERÍSTICOS

Válidos para uma única barra roscada (tipo INA ou MGS) em ausência de entre-eixos e distâncias da borda, para betão C20/25 de espessura elevada e com armadura esparsa.

BETÃO NÃO FISSURADO(1)

TRAÇÃO

barra	h _{ef,padrão}		$N_{Rk,p}/N_{Rk,s}$ [kN]					N _{Rk,s} (²⁾ [kN]	
	[mm]	aço 5.8	Υм	aço 8.8	Υм	[mm]	aço 5.8	ΥMs	aço 8.8	ΥMs
M8	80	18,0		29,0	$\gamma_{Ms} = 1.5^{(2)}$	≥ 80	18,0		29,0	
M10	90	29,0	$\gamma_{Ms} = 1.5^{(2)}$	$\gamma_{Ms} = 1,5^{(2)}$ 42,0 56,8		≥ 100	29,0		46,0	
M12	110	42,0			8	≥ 130	42,0		67,0	
M16	128	71,2		71,2		≥ 180	78,0	1	125,0	1
M20 ⁽³⁾	170	109,0		109,0	$\gamma_{Mc} = 1.5^{(4)(5)}$	≥ 250	122,0	1,5	196,0	1,5
M24 ⁽³⁾	210	149,7	$\gamma_{Mc} = 1.5^{(4)(5)}$	149,7		≥ 325	176,0		282,0	
M27 ⁽³⁾	240	182,9		182,9		≥ 390	230,0	1	368,0	
M30 ⁽³⁾	270	218,2		218,2		≥ 440	280,0		449,0	

CORTE

barra	h _{ef}	V _{Rk,s} ⁽²⁾ [kN]				
	[mm]	aço 5.8	ΥMs	aço 8.8	ΥMs	
M8	≥ 60	11,0		15,0		
M10	≥ 60	17,0		23,0		
M12	≥ 70	25,0		34,0		
M16	≥ 80	47,0	1.25	63,0	4.05	
M20 ⁽³⁾	≥ 100	74,0	1,25	98,0	1,25	
M24 ⁽³⁾	≥ 130	106,0		141,0		
M27 ⁽³⁾	≥ 155	138,0		184,0		
M30 ⁽³⁾	≥ 175	168,0		224,0		

NOTAS

- (1) Para a utilização de barras com aderência aumentada, consultar o documento ETA de referência.
- (2) Modalidade de ruptura do material de aço. (3) Instalação apenas permitida com CAT e HDE.
- (4) Modalidade de rutura do cone de betão (concrete cone failure).
- (5) Valor do coeficiente de segurança do material de betão válido utilizando CAT na instalação. Para sistemas de instalação diferentes, utilizar um coeficiente γ_M de 1.8.
- (6) Modalidade de ruptura por desenfiamento e ruptura do cone de betão (pull-out and concrete cone failure).
- Fator de incremento para a resistência à tração (excluindo rutura do material em aço e cone de betão), válido tanto em presença de betão não fissurado como fissurado.

PRINCÍPIOS GERAIS

- Os valores característicos estão de acordo com a EN 1992-4:2018 com um fator α_{sus} = 0,6 e de acordo com a ETA-20/1285.
 Os valores de projeto são obtidos a partir dos valores característicos, desta forma: R_d = R_k/γ_M.
 Os coeficientes γ_M são apresentados na tabela em função do modo de rutura e de acordo com os certificados de produto.
 Para o cálculo de ancorantes com entre-eixos reduzidos, próximos à borda ou para a fixação sobre betão de classe de resistência superior ou de espessura reduzida ou com armadura densa, ver o documento ETA.
- Para a projetação de ancorantes submetidos a uma carga sísmica, consultar o documento de referência ETA e as indicações da EN 1992-4:2018.

 Para mais detalhes sobre os diâmetros cobertos por vários tipos de certificação (betão fissurado, não fissurado, aplicação sísmica), ver os documentos ETA de referência.

VALORES ESTÁTICOS CARACTERÍSTICOS

Válidos para uma única barra roscada (tipo INA ou MGS) em ausência de entre-eixos e distâncias da borda, para betão C20/25 de espessura elevada e com armadura esparsa.

BETÃO FISSURADO(1)

TRAÇÃO

barra	h _{ef,padrão}	$N_{Rk,p}$ [kN]			h _{ef,max}		N _{Rk,s} /N	I _{Rk,p} [kN]		
	[mm]	aço 5.8	Yмp	aço 8.8	Υм	[mm]	aço 5.8	Υм	aço 8.8	Υм
M8	80	14,1		14,1		160	18,0		28,2	$\gamma_{Mp} = 1.5^{(5)(6)}$
M10	90	21,2	$\gamma_{Mp} = 1.5^{(5)(6)}$	21,2	$\gamma_{Mp} = 1.5^{(5)(6)}$	200	29,0		46,0	
M12	110	33,2		33,2		240	42,0		67,0	4 5(2)
M16	128	49,9		49,9		320	78,0	4.5(2)	125,0	$\gamma_{Ms} = 1,5^{(2)}$
M20 ⁽³⁾	170	76,3		76,3		400	122,0	$\gamma_{Ms} = 1,5^{(2)}$	196,0	
M24 ⁽³⁾	210	104,8	$\gamma_{Mc} = 1.5^{(4)(5)}$	104,8	$\gamma_{Mc} = 1.5^{(4)(5)}$	480	176,0	-	253,3	
M27 ⁽³⁾	240	128,0		128,0		540	230,0		320,6	$\gamma_{Mp} = 1.5^{(5)(6)}$
M30 ⁽³⁾	270	152,8	-	152,8		600	280,0		395,8	

CORTE

barra	h _{ef,padrão}	$V_{Rk,s}^{(2)}$ [kN]						
	[mm]	aço 5.8	ΥMs	aço 8.8	ΥMs			
M8	80	11,0		15,0				
M10	90	17,0		23,0				
M12	110	25,0		34,0				
M16	128	47,0	4.05	63,0				
M20 ⁽³⁾	170	74,0	1,25	98,0	1,25			
M24 ⁽³⁾	210	106,0		141,0				
M27 ⁽³⁾	240	138,0		184,0				
M30 ⁽³⁾	270	168,0		224,0				

factor de incremento para N _{Rk,p} ⁽⁷⁾							
	C25/30	1,02					
Ψ_{c}	C30/37	1,04					
	C40/50	1,08					
	C50/60	1,10					

NOTAS

- (1) Para a utilização de barras com aderência aumentada, consultar o documento ETA de referência.
- (2) Modalidade de rutura do material de aço.
- (3) Instalação apenas permitida com CAT e HDE.
- (4) Modalidade de rutura do cone de betão (concrete cone failure).
- (5) Valor do coeficiente de segurança do material de betão válido utilizando CAT na instalação. Para sistemas de instalação diferentes, utilizar um coeficiente γ_M de
- (6) Modalidade de ruptura por desenfiamento e ruptura do cone de betão (pull-out and concrete cone failure).
- Fator de incremento para a resistência à tração (excluindo rutura do material em aço e cone de betão), válido tanto em presença de betão não fissurado como fissurado.

PRINCÍPIOS GERAIS

- Os valores característicos estão de acordo com a EN 1992-4:2018 com um fator α_{sus} = 0,6 e de acordo com a ETA-20/1285.
 Os valores de projeto são obtidos a partir dos valores característicos, desta forma: R_d = R_k/γ_M.
 Os coeficientes γ_M são apresentados na tabela em função do modo de rutura e de acordo com os certificados de produto.
 Para o cálculo de ancorantes com entre-eixos reduzidos, próximos à borda ou para a fixação sobre betão de classe de resistência superior ou de espessura reduzida ou com armadura densa, ver o documento ETA.
- Para a projetação de ancorantes submetidos a uma carga sísmica, consultar o documento de referência ETA e as indicações da EN 1992-4:2018.
 Para mais detalhes sobre os diâmetros cobertos por vários tipos de certificação (betão fissurado, não fissurado, aplicação sísmica), ver os documentos ETA de referência.

VALORES ESTÁTICOS CARACTERÍSTICOS

Válidos para uma única barra roscada (tipo INA ou MGS) quando instaladas com IR em betão C20/25 com armadura esparsa considerando o espaçamento, a distância da borda e a espessura do betão de base como parâmetros não limitantes.

BETÃO NÃO FISSURADO(1)

TRAÇÃO

barra	h _{ef}	h _{min} ⁽²⁾	$N_{Rk,s}/N_{Rk,p}$ [kN]				
	[mm]	[mm]	aço 5.8	ΥMs	aço 8.8	Υм	
IR-M8	80	110	17,0		27,0	$\gamma_{Ms} = 1.5^{(3)}$	
IR-M10	80	116	29,0	1,5 ⁽³⁾	35,2	$\gamma_{Mc} = 1.5^{(5)(6)}$	
IR-M12 ⁽⁴⁾	125	169	42,0		67,0	$\gamma_{Ms} = 1,5^{(3)}$	
IR-M16 ⁽⁴⁾	170	226	76,0		109,0	$\gamma_{Mc} = 1.5^{(5)(6)}$	

CORTE

barra	h _{ef}	h _{min} ⁽²⁾	V _{Rk,s} ⁽³⁾ [kN]			
	[mm]	[mm]	aço 5.8	ΥMs	aço 8.8	ΥMs
IR-M8	80	110	9,0	1,25	14,0	1,25
IR-M10	80	116	15,0		23,0	
IR-M12 ⁽⁴⁾	125	169	21,0		34,0	
IR-M16 ⁽⁴⁾	170	226	38,0		60,0	

BETÃO FISSURADO(1)

TRAÇÃO

barra	h _{ef}	h _{min} ⁽²⁾	$N_{Rk,s}/N_{Rk,p}$ [kN]			h _{ef}	N _{Rk,s} ⁽³⁾ [kN]				
	[mm]	[mm]	aço 5.8	Υм	aço 8.8	Υм	[mm]	aço 5.8	ΥMs	aço 8.8	ΥMs
IR-M8	80	110	17,0	$\gamma_{Ms} = 1,5^{(3)}$	19,6	$\gamma_{Mc} = 1.5^{(6)(7)}$	≥ 120	17,0		27,0	
IR-M10	80	116	24,6	$\gamma_{Mc} = 1,5^{(5)(6)}$	24,6		≥ 150	29,0	4.5	46,0	4.5
IR-M12 ⁽⁴⁾	125	169	42,0	4 = (3)	48,1	$\gamma_{Mc} = 1.5^{(5)(6)}$	≥ 180	42,0	1,5	67,0	1,5
IR-M16 ⁽⁴⁾	170	226	76,0	$\gamma_{Ms} = 1,5^{(3)}$	76,3		≥ 250	76,0		121,0	

CORTE

barra	h _{ef}	h _{min} ⁽²⁾	V _{Rk,s} (3) [kN]			
	[mm]	[mm]	aço 5.8	ΥMs	aço 8.8	ΥMs
IR-M8	80	110	9,0		14,0	
IR-M10	80	116	15,0	1 25	23,0	1.25
IR-M12 ⁽⁴⁾	125	169	21,0	1,25	34,0	1,25
IR-M16 ⁽⁴⁾	170	226	38,0		60,0	

fator de incremento para N _{Rk,p} (8)					
	C25/30	1,02			
	C30/37	1,04			
Ψ_{c}	C40/50	1,08			
	C50/60	1,10			

- (1) Para a utilização de barras com aderência aumentada, consultar o documento ETA de referência.
- (2) Espessura mínima do suporte de betão.
- (3) Modalidade de rutura do material de aço
- (4) Instalação apenas permitida com CAT e HDE.
 (5) Modalidade de rutura do cone de betão (concrete cone failure).
- (6) Valor do coeficiente de segurança do material de betão válido utilizando CAT na instalação. Para sistemas de instalação diferentes, utilizar um coeficiente γ_M de 1,8.

 (7) Modalidade de ruptura por desenfiamento e ruptura do cone de betão (pull-out and concrete cone failure).
- (8) Fator de incremento para a resistência à tração (excluindo rutura do material em aço e cone de betão), válido tanto em presença de betão não fissurado como fissurado.

PRINCÍPIOS GERAIS

- Os valores característicos estão de acordo com a EN 1992-4:2018 com um fator α_{sus} = 0,6 e de acordo com a ETA-20/1285.
 Os valores de projeto são obtidos a partir dos valores característicos, desta forma: R_d = R_k/γ_M.
 Os coeficientes γ_M são apresentados na tabela em função do modo de rutura e de acordo com os certificados de produto.
 Para o cálculo de ancorantes com entre-eixos reduzidos, próximos à borda ou para a fixação sobre betão de classe de resistência superior ou de espessura reduzida ou com armadura densa, ver o documento ETA.
- Para a projetação de ancorantes submetidos a uma carga sísmica, consultar o documento de referência ETA e as indicações da EN 1992-4:2018.
- Para mais detalhes sobre os diâmetros cobertos por vários tipos de certificação (betão fissurado, não fissurado, aplicação sísmica), ver os documentos ETA de referência.