$d_{\rm K}$

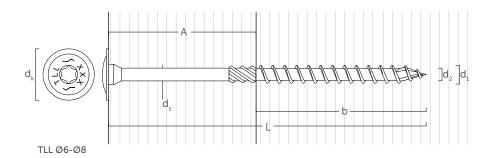
MÉTRICO

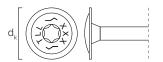
TLL

PARAFUSO PARA MADEIRA CABEÇA **LARGA**

- Parafuso universal de cabeça larga para várias aplicações, desde pequenas estruturas a edifícios de madeira
- Graças à ponta 3 THORNS, as distâncias mínimas de instalação são reduzidas. Os custos e o tempo de execução do projeto são menores
- A cabeça larga substitui a anilha, garantindo uma elevada resistência à tração. Ideal em presença de vento ou variações dimensionais da madeira
- · Certificado para aplicações estruturais tensionadas em qualquer direção em relação à fibra, utilização em CLT e madeiras de alta densidade, como LVL

	MATERIAL		
	d ₁		
	[mm]		
	6 TX 30		
	8 TX 40		
Ĭ.			


b


AMBIENTE

d_1	\mathbf{d}_{K}	CÓDIGO	L	b	Α	pçs
[mm]	[mm]		[mm]	[mm]	[mm]	
6 TX 30		TLL660	60	40	20	100
	15,50	TLL670	70	40	30	100
		TLL680	80	50	30	100
		TLL6100	100	60	40	100
		TLL6120	120	75	45	100
		TLL6140	140	75	65	100
		TLL6160	160	75	85	100
		TLL6180	180	75	105	100
		TLL6200	200	75	125	100
		TLL860	60	52	8	100
		TLL880	80	52	28	50
		TLL8100	100	52	48	50
		TLL8120	120	80	40	50
		TLL8140	140	80	60	50
		TLL8160	160	100	60	50
		TLL8180	180	100	80	50
8 TX 40		TLL8200	200	100	100	50
	19.00	TLL8220	220	100	120	50
	19,00	TLL8240	240	100	140	50
		TLL8260	260	100	160	50
		TLL8280	280	100	180	50
		TLL8300	300	100	200	50
		TLL8320	320	100	220	50
		TLL8340	340	100	240	50
		TLL8360	360	100	260	50
		TLL8380	380	100	280	50
		TLL8400	400	100	300	50
	25,00	TLL10160	160	80	80	50
		TLL10200	200	100	100	50
		TLL10240	240	100	140	50
10 TV 50		TLL10280	280	100	180	50
TX 50		TLL10320	320	120	200	50
		TLL10360	360	120	240	50
		TLL10400	400	120	280	50

 d_1 A espessura máxima

GEOMETRIA E CARACTERÍSTICAS MECÂNICAS

TLL Ø10

diâmetro nominal	d_1	[mm]	6	8	10
diâmetro da cabeça	d _K	[mm]	15,50	19,00	25,00
diâmetro do núcleo	d ₂	[mm]	3,95	5,40	6,40
diâmetro da haste	d _s	[mm]	4,30	5,80	7,00
diâmetro do pré-furo ⁽¹⁾	d _V	[mm]	4,0	5,0	6,0
momento de cedência característico	$M_{y,k}$	[Nm]	9,5	20,1	35,8
parâmetro característico de resistência à extração ⁽²⁾	$f_{ax,k}$	[N/mm ²]	11,7	11,7	11,7
densidade associada	ρ_{a}	[kg/m³]	350	350	350
parâmetro característico de penetração da cabeça ⁽²⁾	f _{head,k}	[N/mm ²]	10,5	10,5	10,5
densidade associada	ρ_{a}	[kg/m³]	350	350	350
resistência característica à tração	f _{tens,k}	[kN]	11,3	20,1	31,4

 $^{^{(1)}}$ Pré-furo válido para madeira de coníferas (softwood). $^{(2)}$ Válido para madeira de conífera (softwood) - densidade máxima de 440 kg/m³.

Para aplicações com materiais diferentes ou com densidade elevada, consultar ETA-11/0030.

VALORES ESTÁTICOS

				CORTE	TRAÇÃO		
geometria			madeira-madeira	extração da rosca ⁽¹⁾	penetração da cabeça ⁽²⁾		
		W] A]				
d_1	L	b	Α	$R_{V,k}$	$R_{ax,k}$	$R_{head,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	
	60	40	20	1,89	3,03	2,72	
	70	40	30	2,15	3,03	2,72	
	80	50	30	2,15	3,79	2,72	
	100	60	40	2,35	4,55	2,72	
6	120	75	45	2,35	5,68	2,72	
	140	75	65	2,35	5,68	2,72	
	160	75	85	2,35	5,68	2,72	
	180	75	105	2,35	5,68	2,72	
	200	75	125	2,35	5,68	2,72	
	60	52	10	1,08	5,25	4,09	
	80	52	28	3,02	5,25	4,09	
	100	52	48	3,71	5,25	4,09	
	120	80	40	3,41	8,08	4,09	
	140	80	60	3,71	8,08	4,09	
	160	100	60	3,71	10,10	4,09	
	180	100	80	3,71	10,10	4,09	
	200	100	100	3,71	10,10	4,09	
8	220	100	120	3,71	10,10	4,09	
Ü	240	100	140	3,71	10,10	4,09	
	260	100	160	3,71	10,10	4,09	
	280	100	180	3,71	10,10	4,09	
	300	100	200	3,71	10,10	4,09	
	320	100	220	3,71	10,10	4,09	
	340	100	240	3,71	10,10	4,09	
	360	100	260	3,71	10,10	4,09	
	380	100	280	3,71	10,10	4,09	
	400	100	300	3,71	10,10	4,09	
	160	80	80	5,64	10,10	7,08	
	200	100	100	5,64	12,63	7,08	
	240	100	140	5,64	12,63	7,08	
10	280	100	180	5,64	12,63	7,08	
	320	120	200	5,64	15,15	7,08	
	360	120	240	5,64	15,15	7,08	
	400	120	280	5,64	15,15	7,08	

NOTAS

- (1) A resistência axial à extração da rosca foi avaliada considerando-se um ângulo ε de 90° entre as fibras e o conector e para um comprimento de cravação igual a
- (2) A resistência axial de penetração da cabeça foi avaliada sobre elemento de madeira.

PRINCÍPIOS GERAIS

- Os valores característicos são conforme a norma EN 1995:2014, de acordo com ETA-11/0030.
- Os valores de projeto são obtidos a partir dos valores característicos, desta forma:

$$R_d = \frac{R_k \cdot k_{mod}}{V_{tot}}$$

- Os coeficientes y_M e k_{mod} devem ser considerados em função da norma vigente utilizada para o cálculo. Para os valores de resistência mecânica e para a geometria dos parafusos, fez-se referência ao que consta da ETA-11/0030.
- Em fase de cálculo, considerou-se uma massa volúmica dos elementos de madeira equivalente a ρ_k = 385 kg/m³
- Os valores foram calculados considerando-se a parte roscada inserida completamente no elemento de madeira.
- A dimensão e a verificação dos elementos de madeira devem ser feitas à parte.
 As resistências características ao corte são avaliadas para parafusos inseridos sem pré-furo.
- O posicionamento dos parafusos deve ser efetuado dentro das distâncias mínimas.