$d_{\scriptscriptstyle K}\,$

TLL EVO

PARAFUSO PARA MADEIRA CABEÇA **LARGA**

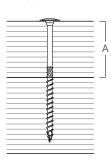
- O mesmo desempenho mecânico dos TLL, mas com a resistência à corrosão do revestimento EVO de base epoxídica e flocos de alumínio
- Com a ponta 3 THORNS, o ajuste dos parafusos torna-se mais fiável e mais rápido, mantendo o desempenho mecânico habitual
- Para utilização no exterior, na classe de serviço 3 e na classe de corrosividade atmosférica C4 (zonas costeiras e industriais), testada pelo Research Institutes of Sweden - RISE
- Revestimento adequado para utilização no exterior em madeiras com um nível de acidez (pH) superior a 4, como o abeto, o larício e o pinheiro

MATERIAL	
----------	--

AMBIENTE

L

b


d_1 d_K CÓ		CÓDIGO	L	b	Α	pçs	
	[mm]	[mm]		[mm]	[mm]	[mm]	
			TLLEVO680	80	50	30	100
		15,50	TLLEVO6100	100	60	40	100
	_		TLLEVO6120	120	75	45	100
	6 TX 30		TLLEVO6140	140	75	65	100
	17.30		TLLEVO6160	160	75	85	100
			TLLEVO6180	180	75	105	100
			TLLEVO6200	200	75	125	100
			TLLEVO8100	100	52	48	50
			TLLEVO8120	120	80	40	50
		TLLEVO8140	140	80	60	50	
	0		TLLEVO8160	160	100	60	50
	8 TX 40	19,00	TLLEVO8180	180	100	80	50
	17.40		TLLEVO8200	200	100	100	50

220

240

280

TLLEVO8220

TLLEVO8240

TLLEVO8280

WBAR ANILHA COM VEDANTE PARA CHAPA

100

100

100

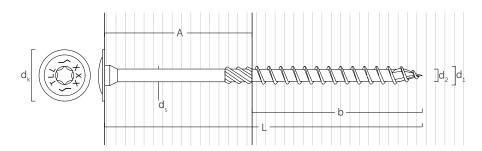
CPL CÁPSULA EM CHAPA PRÉ-PINTADA COM JUNTA EM PE

120

140

180

50


50

50

BROCAS LEWIS E SNAIL PONTAS HELICOIDAIS PARA FUROS

GEOMETRIA E CARACTERÍSTICAS MECÂNICAS

diâmetro nominal	d_1	[mm]	6	8
diâmetro da cabeça	d _K	[mm]	15,50	19,00
diâmetro do núcleo	d ₂	[mm]	3,95	5,40
diâmetro da haste	d _S	[mm]	4,30	5,80
diâmetro do pré-furo ⁽¹⁾	d _V	[mm]	4,0	5,0
momento de cedência característico	$M_{y,k}$	[Nm]	9,5	20,1
parâmetro característico de resistência à extração ⁽²⁾	f _{ax,k}	[N/mm ²]	11,7	11,7
densidade associada	ρ_{a}	[kg/m³]	350	350
parâmetro característico de penetração da cabeça ⁽²⁾	f _{head,k}	[N/mm²]	10,5	10,5
densidade associada	ρ_{a}	[kg/m³]	350	350
resistência característica à tração	f _{tens,k}	[kN]	11,3	20,1

⁽¹⁾ Pré-furo válido para madeira de coníferas (softwood).

 $^{^{(2)}}$ Válido para madeira de conífera (softwood) - densidade máxima de 440 kg/m 3 .

Para aplicações com materiais diferentes ou com densidade elevada, consultar ETA-11/0030.

VALORES ESTÁTICOS

				CORTE	TRAÇÃO		
geometria				madeira-madeira	extração da rosca ⁽¹⁾	penetração da cabeça ⁽²⁾	
	A						
d_1	L	b	Α	R _{V,k}	$R_{ax,k}$	$R_{head,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	
	80	50	30	2,15	3,79	2,72	
	100	60	40	2,35	4,55	2,72	
	120	75	45	2,35	5,68	2,72	
6	140	75	65	2,35	5,68	2,72	
	160	75	85	2,35	5,68	2,72	
	180	75	105	2,35	5,68	2,72	
	200	75	125	2,35	5,68	2,72	
	100	52	48	3,71	5,25	4,09	
	120	80	40	3,41	8,08	4,09	
	140	80	60	3,71	8,08	4,09	
	160	100	60	3,71	10,10	4,09	
8	180	100	80	3,71	10,10	4,09	
	200	100	100	3,71	10,10	4,09	
	220	100	120	3,71	10,10	4,09	
	240	100	140	3,71	10,10	4,09	
	280	100	180	3,71	10,10	4,09	

NOTAS

- (1) A resistência axial à extração da rosca foi avaliada considerando-se um ângulo ε de 90° entre as fibras e o conector e para um comprimento de cravação igual a
- (2) A resistência axial de penetração da cabeça foi avaliada sobre elemento de madeira.

PRINCÍPIOS GERAIS

- Os valores característicos são conforme a norma EN 1995:2014, de acordo com ETA-11/0030.
- Os valores de projeto são obtidos a partir dos valores característicos, desta forma:

$$R_d = \frac{R_k \cdot k_{mod}}{V_{ii}}$$

- Os coeficientes y_M e k_{mod} devem ser considerados em função da norma vigente utilizada para o cálculo. Para os valores de resistência mecânica e para a geometria dos parafusos, fez-se referência ao que consta da ETA-11/0030.
- Em fase de cálculo, considerou-se uma massa volúmica dos elementos de madeira equivalente a ρ_k = 385 kg/m³
- Os valores foram calculados considerando-se a parte roscada inserida completamente no elemento de madeira.
- A dimensão e a verificação dos elementos de madeira devem ser feitas à parte.
 As resistências características ao corte são avaliadas para parafusos inseridos sem pré-furo.
- O posicionamento dos parafusos deve ser efetuado dentro das distâncias mínimas.