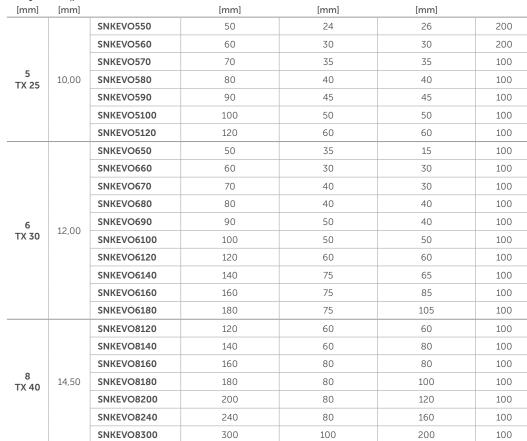
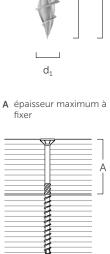
SNK EVO

VIS POUR BOIS ET TÊTE FRAISÉE

- Les mêmes performances mécaniques des SNK mais avec la résistance à la corrosion du revêtement EVO à base époxy et de paillettes
- · Avec la pointe 3 THORNS, l'amorce de vissage devient plus fiable et plus rapide, tout en conservant les performances mécaniques habituelles
- Pour extérieur, en classe de service 3 et en classe de corrosivité atmosphérique C4 (zones côtières et industrielles) testée par le Research Institutes of Sweden - RISE
- Revêtement adapté aux applications extérieures sur bois dont le niveau d'acidité (pH) est supérieur à 4, comme le sapin, le mélèze et le pin




ENVIRONNEMENT

L

b

d ₁	d _K	CODE	L	b	A	pcs.
[mm]	[mm]		[mm]	[mm]	[mm]	
	10,00	SNKEVO550	50	24	26	200
		SNKEVO560	60	30	30	200
		SNKEVO570	70	35	35	100
5 TX 25		SNKEVO580	80	40	40	100
= 9		SNKEVO590	90	45	45	100
		SNKEVO5100	100	50	50	100
		SNKEVO5120	120	60	60	100
		SNKEVO650	50	35	15	100
		SNKEVO660	60	30	30	100
		SNKEVO670	70	40	30	100
		SNKEVO680	80	40	40	100
6	12,00	SNKEVO690	90	50	40	100
TX 30		SNKEVO6100	100	50	50	100
		SNKEVO6120	120	60	60	100
		SNKEVO6140	140	75	65	100
		SNKEVO6160	160	75	85	100
		SNKEVO6180	180	75	105	100
	14,50	SNKEVO8120	120	60	60	100
		SNKEVO8140	140	60	80	100
		SNKEVO8160	160	80	80	100
8 TX 40		SNKEVO8180	180	80	100	100
		SNKEVO8200	200	80	120	100
		SNKEVO8240	240	80	160	100
		SNKEVO8300	300	100	200	100

SHT EVO

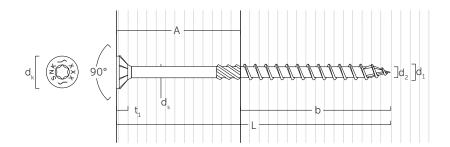
RONDELLE TOURNÉE AVEC REVÊTEMENT C4 EVO

d _{1 SNK EVO} [mm]	CODE	D ₂ [mm]	h [mm]	pcs.
6	SHTEVO6	20,0	4,5	100
8	SHTEVO8	25,0	5,5	50

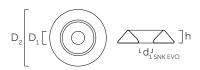
SNK EVO BUCKET

VIS SNK EVO EN SEAU

- Vis structurelles universelles SNK EVO disponibles en boîte pratique
- Emballage qui garantit la durabilité également en cas de pluie
- Boîte en plastique PET, durable, résistante aux chocs et réutilisable


d ₁	d _K	CODE	L	b	Α	pcs.
[mm]	[mm]		[mm]	[mm]	[mm]	
	10,00	SNKEVOBUC550	50	24	26	1400
		SNKEVOBUC560	60	30	30	1300
		SNKEVOBUC570	70	35	35	600
5 TX 25		SNKEVOBUC580	80	40	40	600
		SNKEVOBUC590	90	45	45	600
		SNKEVOBUC5100	100	50	50	700
		SNKEVOBUC5120	120	60	60	600
	12,00	SNKEVOBUC660	60	30	30	900
		SNKEVOBUC670	70	40	30	800
		SNKEVOBUC680	80	40	40	700
6		SNKEVOBUC690	90	50	40	600
TX 30		SNKEVOBUC6100	100	50	50	500
		SNKEVOBUC6120	120	60	60	400
		SNKEVOBUC6140	140	75	65	400
		SNKEVOBUC6160	160	75	85	350

GÉOMÉTRIE ET CARACTÉRISTIQUES MÉCANIQUES



diamètre nominal	d_1	[mm]	5	6	8
diamètre tête	d _K	[mm]	10,00	12,00	14,50
diamètre noyau	d ₂	[mm]	3,40	3,95	5,40
diamètre tige	d _S	[mm]	3,65	4,30	5,80
épaisseur tête	t ₁	[mm]	3,10	4,50	4,50
diamètre pré-perçage ⁽¹⁾	d _V	[mm]	3,0	4,0	5,0
moment plastique caractéristique	$M_{y,k}$	[Nm]	5,4	9,5	20,1
résistance caractéristique à l'arrachement ⁽²⁾	$f_{ax,k}$	[N/mm²]	11,7	11,7	11,7
densité associée	ρ_{a}	[kg/m ³]	350	350	350
résistance caractéristique à la pénétration de la tête ⁽²⁾	f _{head,k}	[N/mm²]	10,5	10,5	10,5
densité associée	ρ_{a}	[kg/m ³]	350	350	350
résistance caractéristique à la traction	f _{tens,k}	[kN]	7,9	11,3	20,1

(1)Pré-perçage valable pour bois de conifère (softwood).
(2) Valable pour bois de conifère (softwood) - densité maximale 440 kg/m³.
Pour des applications avec des matériaux différents ou avec une densité élevée, veuillez-vous reporter au document ATE-11/0030.

SHT EVO

RONDELLE TOURNÉE AVEC REVÊTEMENT C4 EVO

diamètre nominal vis	d _{1 SNK EVO}	[mm]	6	8
diamètre interne	D_1	[mm]	7,5	8,5
diamètre extérieur	D ₂	[mm]	20,0	25,0
hauteur	h	[mm]	4,5	5,5

VALEURS STATIQUES

		COUPE	TRACTION				
géométrie				bois-bois	extraction du filet ⁽¹⁾ pénétration tête ⁽²⁾		pénétration tête avec rondelle ⁽²⁾
d ₁	L	b	Α	R _{V,k}	R _{ax,k}	R _{head,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
	50	24	26	1,29	1,52	1,13	-
	60	30	30	1,46	1,89	1,13	-
	70	35	35	1,46	2,21	1,13	-
5	80	40	40	1,46	2,53	1,13	-
	90	45	45	1,46	2,84	1,13	-
	100	50	50	1,46	3,16	1,13	-
	120	60	60	1,46	3,79	1,13	-
	50	35	15	1,53	2,65	1,63	4,53
	60	30	30	1,78	2,27	1,63	4,53
	70	40	30	1,88	3,03	1,63	4,53
	80	40	40	2,08	3,03	1,63	4,53
6	90	50	40	2,08	3,79	1,63	4,53
· ·	100	50	50	2,08	3,79	1,63	4,53
	120	60	60	2,08	4,55	1,63	4,53
	140	75	65	2,08	5,68	1,63	4,53
	160	75	85	2,08	5,68	1,63	4,53
	180	75	105	2,08	5,68	1,63	4,53
	120	60	60	3,28	6,06	2,38	7,08
	140	60	80	3,28	6,06	2,38	7,08
	160	80	80	3,28	8,08	2,38	7,08
8	180	80	100	3,28	8,08	2,38	7,08
	200	80	120	3,28	8,08	2,38	7,08
	240	80	160	3,28	8,08	2,38	7,08
	300	100	200	3,28	10,10	2,38	7,08

NOTES

- $^{(1)}$ La résistance axiale à l'extraction du filetage a été évaluée en considérant un angle ϵ de 90 ° entre les fibres et le connecteur et pour une longueur d'enfoncement égale à b.
- (2) La résistance axiale de pénétration de la tête, avec ou sans rondelle, a été calculée sur la base d'un matériau en bois.

PRINCIPES GÉNÉRAUX

- Les valeurs caractéristiques sont celles de la norme EN 1995:2014 conformément à ATE-11/0030.
- Les valeurs de calcul sont obtenues à partir des valeurs caractéristiques suivantes :

$$R_d = \frac{R_k \cdot k_{mod}}{v_{ij}}$$

- Les coefficients γ_M et k_{mod} sont établis en fonction de la réglementation en vigueur utilisée pour le calcul.

 Pour les valeurs de résistance mécanique et pour la géométrie des vis, il a été fait référence à ce qui est reporté dans ATE-11/0030.
- Pour le calcul, la masse volumique des éléments en bois a été estimée à $\rho_k = 385 \text{ kg/m}^3$.
- Les valeurs ont été calculées en considérant que la partie filetée est complètement insérée dans l'élément en bois.
- Le dimensionnement et la vérification des éléments en bois seront effectués séparément. Les résistances caractéristiques au cisaillement sont évaluées pour des vis insérées sans pré-perçage.
- Le positionnement des vis doit être réalisé dans le respect des distances minimales.