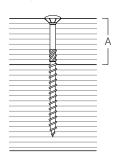
L

b

VIS À TÊTE FRAISÉE BOMBÉE ET TIGE RENFORCÉE

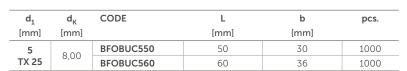

- Tête fraisée avec géométrie en forme de goutte et courbe superficielle pour un rendu esthétique agréable et une prise ferme avec l'embout
- Tige de diamètre supérieur et résistance à la torsion élevée pour un vissage solide
- En acier inoxydable de type austénitique A2 | AISI305. Elle offre une résistance élevée à la corrosion
- Idéale pour des applications en extérieur jusqu'à 1 km de la mer et sur la plupart des bois acides en classe T4

A épaisseur maximum à fixer

 d_1

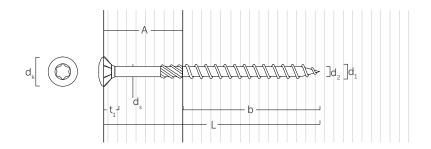
MATÉRIAU

	A2 AISI 30


d ₁	d _K	CODE	L	b	A	pcs.
[mm]	[mm]		[mm]	[mm]	[mm]	
5 TX 25	8,00	BFO550	50	30	20	200
		BFO560	60	36	24	200
		BFO570	70	42	28	100

BFO BUCKET

VIS BFO EN SEAU 1000


• Vis également utilisables pour les terrasses

GÉOMÉTRIE ET CARACTÉRISTIQUES MÉCANIQUES

diamètre nominal	d_1	[mm]	5,3
diamètre tête	d _K	[mm]	8,00
diamètre noyau	d ₂	[mm]	3,90
diamètre tige	d _S	[mm]	4,10
épaisseur tête	t ₁	[mm]	3,65
diamètre pré-perçage ⁽¹⁾	d_V	[mm]	3,5
moment plastique caractéristique	$M_{y,k}$	[Nm]	9,7
résistance caractéristique à l'arrachement	$f_{ax,k}$	[N/mm²]	16,6
densité associée	ρ_{a}	[kg/m ³]	350
résistance caractéristique à la pénétration de la tête	f _{head,k}	[N/mm²]	21,4
densité associée	ρ_{a}	[kg/m³]	350
résistance caractéristique à la traction	$f_{\text{tens,k}}$	[kN]	7,3

⁽¹⁾ Pour les matériaux à densité élevée, il est conseillé d'effectuer un pré-perçage en fonction de l'espèce de bois.

VALEURS STATIQUES

				COL	UPE	TRACTION		
géométrie		bois-bois bois-bois sans pré-perçage avec pré-perçage		extraction du filet ⁽¹⁾ pénétration têt				
				191				
d ₁	L	b	Α	R _{V,k}	R _{V,k}	R _{ax,k}	$R_{head,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	50	30	20	1,39	1,80	2,88	1,58	
5	60	36	30	1,55	1,92	3,46	1,58	
	70	42	40	1,64	2,06	4,03	1,58	

NOTES

- (1) La résistance axiale à l'extraction du filetage a été évaluée en considérant un angle ε de 90 ° entre les fibres et le connecteur et pour une longueur d'enfoncement égale à b.
- (2) La résistance axiale de pénétration de la tête a été calculée sur la base d'un élément en bois.

PRINCIPES GÉNÉRAUX

- Les valeurs caractéristiques sont selon EN 1995:2014.
- Les valeurs de calcul sont obtenues à partir des valeurs caractéristiques suivantes :

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

- Les coefficients γ_M et k_{mod} sont établis en fonction de la réglementation en vigueur utilisée pour le calcul. Valeurs de résistance mécanique et géométrie des vis conformément au marquage CE selon EN 14592.
- Pour le calcul, la masse volumique des éléments en bois a été estimée à $\rho_k = 420 \text{ kg/m}^3$.
- Les valeurs ont été calculées en considérant que la partie filetée est complètement insérée dans l'élément en bois. Le dimensionnement et la vérification des éléments en bois et en acier doivent être effectués séparément.
- Le positionnement des vis doit être réalisé dans le respect des distances minimales.