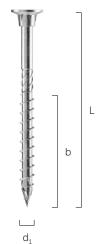
KGA

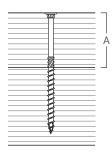

cES



VIS UNIVERSELLE À TÊTE TRONCONIQUE

- La sous-tête plate accompagne l'absorption des copeaux et évite les fissures du bois, garantissant une finition superficielle très soignée
- Grâce à la pointe 3 THORNS, les distances de pose minimales sont réduites. Il est possible d'utiliser plus de vis sur une surface plus petite et des vis plus grandes sur des éléments plus petits
- Filet asymétrique en parapluie spécial à longueur augmentée (60 %) pour une excellente capacité de tirage. Filetage à pas serré pour la plus haute précision en fin de vissage
- Acier inoxydable martensitique : parmi les aciers inoxydables, il s'agit de celui qui offre les meilleures prestations mécaniques
- Idéal pour des applications en extérieur et sur des bois acides mais à l'abri des agents corrosifs (chlorures, sulfures, etc.)
- Indiqué pour les lames en bois avec densité < 780 kg/m³ sans pré-perçage et pour des lames en WPC avec pré-perçage

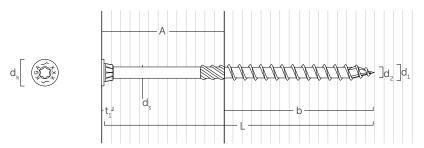
ENVIRONNEMENT



d_1	d_K	CODE	L	b	Α	pcs.
[mm]	[mm]		[mm]	[mm]	[mm]	
4	7,70	KGA440	40	24	16	500
TX 20	7,70	KKF445	45	30	15	200
		KGA4550	50	30	20	250
4,5 TX 20	8,70	KGA4560	60	35	25	200
		KGA4570	70	40	30	200
		KGA550	50	30	20	200
5	0.65	KGA560	60	35	25	200
TX 25	9,65	KGA570	70	40	30	100
		KGA580	80	50	30	100

PRODUITS CONNEXES

SNAP CONNECTEUR ET ES-PACEUR CACHÉ POUR TERRASSES



TERRALOCK
CONNECTEUR POUR
TERRASSES

MÈCHES SNAIL
MÈCHES HÉLICOÏDALES
POUR BOIS DURS

GÉOMÉTRIE ET CARACTÉRISTIQUES MÉCANIQUES

diamètre nominal	d_1	[mm]	4	4,5	5
diamètre tête	d _K	[mm]	7,70	8,70	9,65
diamètre noyau	d ₂	[mm]	2,60	3,05	3,25
diamètre tige	d _S	[mm]	2,90	3,35	3,60
épaisseur tête	t ₁	[mm]	5,00	5,00	6,00
diamètre pré-perçage ⁽¹⁾	d _V	[mm]	2,50	2,50	3,00
moment plastique caractéristique	$M_{y,k}$	[Nm]	3,00	4,10	5,40
résistance caractéristique à l'arrachement ⁽²⁾	$f_{ax,k}$	[N/mm ²]	11,70	11,70	11,70
densité associée	ρ_{a}	[kg/m³]	350	350	350
résistance caractéristique à l'arrachement ⁽²⁾	$f_{head,k}$	[N/mm ²]	16,50	16,50	16,50
densité associée	ρ_{a}	[kg/m³]	350	350	350
résistance caractéristique à la traction	f _{tens,k}	[kN]	5,00	6,40	7,90

⁽¹⁾ Pré-perçage valable pour bois de conifère (softwood).

Pour des applications avec des matériaux différents ou avec une densité élevée, veuillez-vous reporter au document ATE-11/0030.

VALEURS STATIQUES

				COUPE	TRAC	TION
	géom	étrie		bois-bois	extraction du filet ⁽¹⁾	pénétration tête ⁽²⁾
	d ₁		Â			
d ₁	L	b	Α	R _{V,k}	$R_{ax,k}$	D
		-	^	N _{V,k}	Nax,k	$R_{head,k}$
[mm]	[mm]	[mm]	[mm]	kN]	^N ax,k [kN]	K _{head,k} [kN]
	[mm]					
[mm] 4		[mm]	[mm]	[kN]	[kN]	[kN]
4	40	[mm]	[mm] 16	[kN] 0,97	[kN] 1,30	[kN] 1,13
	40 45 50 60	[mm] 24 30	[mm] 16 15 20 25	[kN] 0,97 0,95	[kN] 1,30 1,62 1,83 2,13	[kN] 1,13 1,13
4	40 45 50	[mm] 24 30 30 35 40	[mm] 16 15 20 25 30	[kN] 0,97 0,95 1,25	[kN] 1,30 1,62 1,83 2,13 2,44	[kN] 1,13 1,13 1,44 1,44 1,44
4	40 45 50 60 70 50	[mm] 24 30 30 35 40 30	[mm] 16 15 20 25 30 20	[kN] 0,97 0,95 1,25 1,39 1,40 1,45	[kN] 1,30 1,62 1,83 2,13 2,44 2,03	[kN] 1,13 1,13 1,44 1,44 1,44 1,78
4,5	40 45 50 60 70	[mm] 24 30 30 35 40	[mm] 16 15 20 25 30 20 25	[kN] 0,97 0,95 1,25 1,39 1,40	[kN] 1,30 1,62 1,83 2,13 2,44	[kN] 1,13 1,13 1,44 1,44 1,44
4	40 45 50 60 70 50	[mm] 24 30 30 35 40 30	[mm] 16 15 20 25 30 20	[kN] 0,97 0,95 1,25 1,39 1,40 1,45	[kN] 1,30 1,62 1,83 2,13 2,44 2,03	[kN] 1,13 1,13 1,44 1,44 1,44 1,78

NOTES

- $^{(1)}$ La résistance axiale à l'extraction du filetage a été évaluée en considérant un angle ϵ de 90 $^{\circ}$ entre les fibres et le connecteur et pour une longueur d'enfoncement égale à b.
- (2) La résistance axiale de pénétration de la tête a été calculée sur la base d'un élément en bois.

PRINCIPES GÉNÉRAUX

- Les valeurs caractéristiques sont celles de la norme EN 1995:2014 conformément à ATE-11/0030.
- Les valeurs de calcul sont obtenues à partir des valeurs caractéristiques suivantes :

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

- Les coefficients γ_M et k_{mod} sont établis en fonction de la réglementation en vigueur utilisée pour le calcul. Pour les valeurs de résistance mécanique et pour la géométrie des vis, il a été fait référence à ce qui est reporté dans ATE-11/0030.
- Pour le calcul, la masse volumique des éléments en bois a été estimée à $\rho_k = 420 \text{ kg/m}^3$.
- Les valeurs ont été calculées en considérant que la partie filetée est complètement insérée dans l'élément en bois.
- Le dimensionnement et la vérification des éléments en bois seront effectués séparément.
- Les résistances caractéristiques au cisaillement sont évaluées pour des vis insérées sans pré-perçage.
- Le positionnement des vis doit être réalisé dans le respect des distances minimales.

⁽²⁾ Valable pour bois de conifère (softwood) - densité maximale 440 kg/m³.