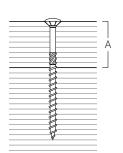
BFO

TORNILLO CABEZA REDONDA Y **CUELLO REFORZADO**

- Cabeza avellanada con geometría de gota y curvado superficial para un efecto estético agradable y un firme agarre con la punta
- Cuello de diámetro aumentado y resistencia a la torsión elevada para un atornillado fuerte y seguro
- En acero inoxidable de tipo austenítico A2 | AISI305. Ofrece alta resistencia a la corrosión
- Adecuado para aplicaciones en exteriores hasta 1 km del mar y en la mayoría de maderas ácidas



NCLUDED

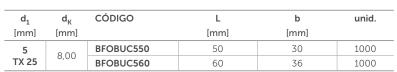
A espesor máximo fijable

 d_1

b

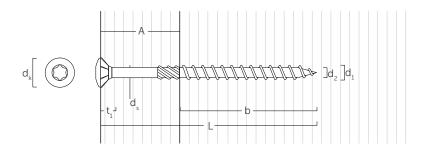
AMBIENTE

MATERIAL


		CÓDIGO				
d ₁	d _K		L	b	Α	unid.
[mm]	[mm]		[mm]	[mm]	[mm]	
		BFO550	50	30	20	200
5 TX 25	8,00	BFO560	60	36	24	200
		BFO570	70	42	28	100

BFO BUCKET

TORNILLOS BFO ENVASADOS EN CUBOS 1000


• Los tornillos también se pueden utilizar en terrazas

GEOMETRÍA Y CARACTERÍSTICAS MECÁNICAS

diámetro nominal	d_1	[mm]	5,3
diámetro cabeza	d _K	[mm]	8,00
diámetro núcleo	d ₂	[mm]	3,90
diámetro cuello	d _S	[mm]	4,10
espesor cabeza	t_1	[mm]	3,65
diámetro pre-agujero ⁽¹⁾	d _V	[mm]	3,5
momento plástico característico	$M_{y,k}$	[Nm]	9,7
parámetro típico de resistencia a la extracción	$f_{ax,k}$	[N/mm ²]	16,6
densidad asociada	ρ_{a}	[kg/m³]	350
parámetro característico de penetración de la cabeza	f _{head,k}	[N/mm ²]	21,4
densidad asociada	ρ_{a}	[kg/m³]	350
resistencia característica de tracción	f _{tens,k}	[kN]	7,3

⁽¹⁾ Sobre materiales de densidad elevada se recomienda pre-perforar en función del tipo de madera.

VALORES ESTÁTICOS

				COI	RTE	TRACCIÓN		
geometría				madera-madera sin pre-agujero	madera-madera con pre-agujero	extracción de la rosca ⁽¹⁾	penetración cabeza ⁽²⁾	
] A			191			
d ₁	L	b	Α	R _{V,k}	R _{V,k}	R _{ax,k}	$R_{head,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	50	30	20	1,39	1,80	2,88	1,58	
5	60	36	30	1,55	1,92	3,46	1,58	
	70	42	40	1,64	2,06	4,03	1,58	

NOTAS

- (1) La resistencia axial a la extracción de la rosca se ha evaluado considerando un ángulo de ε 90° entre las fibras y el conector y con una longitud de penetración
- (2) La resistencia axial de penetración de la cabeza ha sido evaluada sobre el elemento de madera.

PRINCIPIOS GENERALES

- Valores característicos según la norma EN 1995:2014.
- Los valores de proyecto se obtienen a partir de los valores característicos de la siguiente manera:

$$R_d = \frac{R_k \cdot k_{mod}}{V}$$

- Los coeficientes γ_M y k_{mod} se deben tomar de acuerdo con la normativa vigente utilizada para el cálculo. Valores de resistencia mecánica y geometría de los tornillos de acuerdo con el marcado CE según EN 14592
- En la fase de cálculo se ha considerado una masa volúmica de los elementos de madera equivalente a ρ_k = 420 kg/m³.
- Los valores han sido calculados considerando la parte roscada completamente introducida en el elemento de madera. El dimensionamiento y la comprobación de los elementos de madera y de acero deben efectuarse aparte. Los tornillos deben colocarse con respecto a las distancias mínimas.