MÉTRICO

H-NEX

ANCLAJE QUÍMICO HÍBRIDO DE ALTAS PRESTACIONES

- Resina de metacrilato de uretano
- CE opción 1 para hormigón fisurado y no fisurado
- Categoría de prestación sísmica C2 (M12-M24)
- Certificación de resistencia al fuego F120
- Conformidad con los requisitos LEED® v4.1 BETA
- Clase A+ para emisiones de compuestos orgánicos volátiles (VOC) en entornos urbanos
- Ideal para anclajes muy pesados y barras de armadura postinstaladas
- Excelente comportamiento viscoso a largo plazo
- Hormigón seco o mojado
- Hormigón con agujeros sumergidos
- Se permite la aplicación desde abajo
- Instalación certificada también con broca hueca de aspiración

CÓDIGO	formato [mL]	unid.
HNEX280	280	12
HNEX420	420	12

Validez desde la fecha de producción: 18 meses. Temperatura de almacenamiento comprendida entre +5 y 25 °C. Boquilla incluida en el paquete.

ACCESORIOS DISPONIBLES

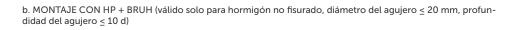
CÓDIGO	descripción	unid.
STING	boquilla de recambio para cartuchos de 280 y 420 ml	1

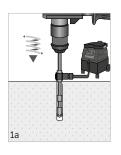
FLY LITE
PISTOLA PROFESIONAL
PARA CARTUCHOS DE
310 ml

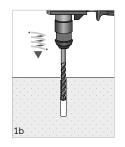
INA
BARRA ROSCADA CL.
5.8 CON TUERCA Y
ARANDELA

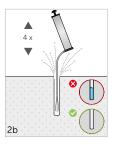
IHM | IHP

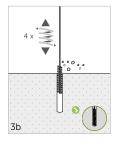
CASQUILLOS PARA

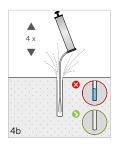

MATERIALES PERFORADOS

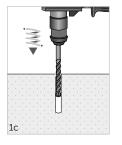


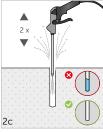

MONTAJE

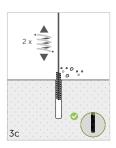

Realización del orificio: tres posibilidades diferentes de instalación.

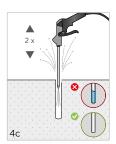

a. MONTAJE CON BROCA HUECA DE ASPIRACIÓN (HDE)



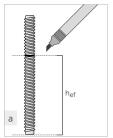


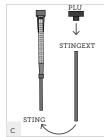


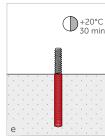


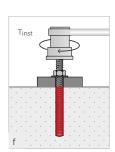


c. MONTAJE CON CAT + BRUH






Instalación de la barra:



TIEMPOS Y TEMPERATURAS DE COLOCACIÓN

toward water de compute	tionen o de trabajolista d	tiempo de espera aplicación de la carga		
temperatura de soporte	tiempo de trabajabilidad	soporte seco	soporte húmedo	
-5 ÷ -1 °C	50 min	5 h	10 h	
0 ÷ +4 °C	25 min	3,5 h	7 h	
+5 ÷ +9 ℃	15 min	2 h	4 h	
+10 ÷ +14 °C	10 min	1 h	2 h	
+15 ÷ +19 °C	6 min	40 min	80 min	
+20 ÷ +29 °C	3 min	30 min	60 min	
+30 ÷ +40 °C	2 min	30 min	60 min	

Temperatura de almacenamiento del cartucho +5 - +40°.

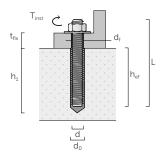
HEKKAMIENIAS

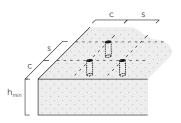
INSTALACIÓN

CARACTERÍSTICAS GEOMÉTRICAS DE COLOCACIÓN EN HORMIGÓN

BARRA ROSCADA (TIPO INA O MGS)

d diámetro anclaje


d₀ diámetro del agujero en el soporte de hormigón


 $\mathbf{h}_{\mathrm{ef,min}}$ profundidad efectiva de anclaje

 $\mathbf{d_f}$ diámetro del agujero en el elemento a fijar

 $\begin{array}{ll} \textbf{T}_{\text{inst}} & \text{par de apriete m\'aximo} \\ \textbf{L} & \text{longitud del anclaje} \\ \textbf{t}_{\text{fix}} & \text{espesor m\'aximo fijable} \end{array}$

 $\mathbf{h_1}$ profundidad mínima del agujero

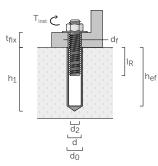
d	[mm]	M8	M10	M12	M16	M20	M24	M27	M30
d ₀	[mm]	10	12	14	18	22	28	30	35
h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
d _f	[mm]	9	12	14	18	22	26	30	33
T _{inst}	[Nm]	10	20	40	60	100	170	250	300

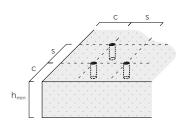
			M8	M10	M12	M16	M20	M24	M27	M30
Intereje mínimo	S _{min}	[mm]	40	50	60	75	95	115	125	140
Distancia mínima desde el borde	C _{min}	[mm]	35	40	45	50	60	65	75	80
Espesor mínimo del soporte de hormigón	h _{min}	[mm]	h _{ef} -	+ 30 ≥ 100	mm			$h_{ef} + 2 d_0$		

Para distancias interejes y distancias menores de las críticas, habrá reducciones en los valores de resistencia a causa de los parámetros de instalación.

CASQUILLO CON ROSCADO MÉTRICO INTERNO (TIPO IR)

d₂ diámetro de la barra roscada interna


d diámetro del elemento anclado en el hormigón


d₀ diámetro del agujero en el soporte de hormigón

 $\mathbf{h}_{\mathsf{ef,min}}$ profundidad efectiva de anclaje

d_f diámetro del agujero en el elemento a fijar

 T_{inst} par de apriete máximo t_{fix} espesor máximo fijable h_1 profundidad mínima del agujero l_R longitud de la barra roscada interna

		IR-M8	IR-M10	IR-M12	IR-M16
d ₂	[mm]	8	10	12	16
d	[mm]	12	16	20	24
d ₀	[mm]	14	18	22	28
h _{ef,min}	[mm]	70	80	90	96
h _{ef,max}	[Nm]	240	320	400	480
d _f	[mm]	9	12	14	18
T _{inst}	[mm]	10	20	40	60
I _{R,min}	[mm]	8	10	12	16
I _{R,max}	[mm]	20	25	30	32

			IR-M8	IR-M10	IR-M12	IR-M16
Intereje mínimo	s _{min}	[mm]	60	75	95	115
Distancia mínima desde el borde	c _{min}	[mm]	45	50	60	65
Espesor mínimo del soporte de hormigón	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm		$h_{ef} + 2 d_0$	

Para distancias interejes y distancias menores de las críticas, habrá reducciones en los valores de resistencia a causa de los parámetros de instalación.

Clasificación del componente A y del componente B: Skin Sens. 1. May cause an allergic skin reaction.

VALORES ESTÁTICOS CARACTERÍSTICOS

Válidos para una sola barra roscada (tipo INA o MGS) en ausencia de interejes y distancias desde el borde, para hormigón C20/25 de espesor alto y con armadura dispersa.

HORMIGÓN NO FISURADO(1)

TRACCIÓN

barra	h _{ef,standard}		$N_{Rk,p}/N_{Rk,s}$ [kN]					N _{Rk,s} (²⁾ [kN]	
	[mm]	acero 5.8	Υм	acero 8.8	Υм	[mm]	acero 5.8	ΥMs	acero 8.8	ΥMs
M8	80	18,0		29,0	$\gamma_{Ms} = 1,5^{(2)}$	≥ 80	18,0		29,0	
M10	90	29,0	$\gamma_{Ms} = 1.5^{(2)}$	42,0		≥ 100	29,0		46,0	
M12	110	42,0		56,8		≥ 130	42,0		67,0	
M16	128	71,2		71,2		≥ 180	78,0	1.	125,0	1.5
M20 ⁽³⁾	170	109,0		109,0	$\gamma_{Mc} = 1.5^{(4)(5)}$	≥ 250	122,0	1,5	196,0	1,5
M24 ⁽³⁾	210	149,7	$\gamma_{Mc} = 1.5^{(4)(5)}$	149,7		≥ 325	176,0		282,0	
M27 ⁽³⁾	240	182,9		182,9		≥ 390	230,0		368,0	
M30 ⁽³⁾	270	218,2		218,2		≥ 440	280,0		449,0	

CORTE

barra	h _{ef}	V _{Rk,s} ⁽²⁾ [kN]					
	[mm]	acero 5.8	ΥMs	acero 8.8	ΥMs		
M8	≥ 60	11,0		15,0			
M10	≥ 60	17,0		23,0			
M12	≥ 70	25,0		34,0			
M16	≥ 80	47,0	4.25	63,0	1.25		
M20 ⁽³⁾	≥ 100	74,0	1,25	98,0	1,25		
M24 ⁽³⁾	≥ 130	106,0		141,0			
M27 ⁽³⁾	≥ 155	138,0		184,0			
M30 ⁽³⁾	≥ 175	168,0		224,0			

NOTAS

- (1) Para el uso de barras de adherencia mejorada, consultar el documento ETA de referencia.
 (2) Modalidad de rotura del material acero.
- (3) La instalación solo está permitida con CAT y HDE.
- (4) Modalidad de rotura del cono de hormigón (concrete cone failure).
- (5) Valor del coeficiente de seguridad del material hormigón válido utilizando CAT en la instalación. Para sistemas de instalación diferentes, utilizar un coeficiente γ_M igual a 1,8.
- (6) Modalidad de rotura por extracción y rotura del cono de hormigón (pull-out and concrete cone failure).
- (7) Factor de aumento de resistencia a la tracción (excluida la rotura del material de acero y cono de hormigón) válido tanto en presencia de hormigón fisurado como no fisurado.

PRINCIPIOS GENERALES

- Los valores característicos respetan la normativa EN 1992-4:2018 con un factor α_{sus} =0,6 en conformidad con ETA-20/1285. Los valores de proyecto se obtienen a partir de los valores característicos de la siguiente manera: $R_d = R_k/\gamma_M$. Los coeficientes γ_M se indican en la tabla en función de la modalidad de rotura y de acuerdo con los certificados del producto.
- Para el cálculo de anclajes con interejes reducidos, cerca del borde o para la fijación en hormigón con clase de resistencia superior, con espesor reducido o con armadura tupida, consultar el documento ETA.
- Para diseñar anclajes sometidos a carga sísmica, consultar el documento ETA de referencia y lo indicado EN 1992-4:2018.

 Para los datos de los diámetros cubiertos por los diferentes tipos de certificación (hormigón fisurado, no fisurado, aplicación sísmica), consultar los documentos ETA de referencia.

VALORES ESTÁTICOS CARACTERÍSTICOS

Válidos para una sola barra roscada (tipo INA o MGS) en ausencia de interejes y distancias desde el borde, para hormigón C20/25 de espesor alto y con armadura dispersa.

HORMIGÓN FISURADO(1)

TRACCIÓN

barra	h _{ef,standard}		$N_{Rk,p}$ [kN]			h _{ef,max}		N _{Rk,s} /N	I _{Rk,p} [kN]	
	[mm]	acero 5.8	Yмp	acero 8.8	Υм	[mm]	acero 5.8	Υм	acero 8.8	Υм
M8	80	14,1		14,1		160	18,0		28,2	$\gamma_{Mp} = 1.5^{(5)(6)}$
M10	90	21,2	$\gamma_{Mp} = 1.5^{(5)(6)}$	21,2	$\gamma_{Mp} = 1.5^{(5)(6)}$	200	29,0		46,0	
M12	110	33,2		33,2		240	42,0		67,0	4 5(2)
M16	128	49,9		49,9		320	78,0	4.5(2)	125,0	$\gamma_{Ms} = 1.5^{(2)}$
M20 ⁽³⁾	170	76,3		76,3		400	122,0	$\gamma_{Ms} = 1.5^{(2)}$	196,0	
M24 ⁽³⁾	210	104,8	$\gamma_{Mc} = 1.5^{(4)(5)}$	104,8	$\gamma_{Mc} = 1,5^{(4)(5)}$	480	176,0		253,3	
M27 ⁽³⁾	240	128,0		128,0		540	230,0		320,6	$\gamma_{Mp} = 1.5^{(5)(6)}$
M30 ⁽³⁾	270	152,8	-	152,8		600	280,0		395,8	

CORTE

barra	h _{ef,standard}		V _{Rk,s}	(2) [kN]			
	[mm]	acero 5.8	ΥMs	acero 8.8	ΥMs		
M8	80	11,0	-	15,0			
M10	90	17,0		23,0	4.05		
M12	110	25,0		34,0			
M16	128	47,0	1.25	63,0			
M20 ⁽³⁾	170	74,0	1,25	98,0	1,25		
M24 ⁽³⁾	210	106,0		141,0			
M27 ⁽³⁾	240	138,0		184,0	1		
M30 ⁽³⁾	270	168,0		224,0			

factor de aumento para $N_{Rk,p}^{(7)}$							
Ψ _c	C25/30	1,02					
	C30/37	1,04					
	C40/50	1,08					
	C50/60	1,10					

NOTAS

- (1) Para el uso de barras de adherencia mejorada, consultar el documento ETA de referencia.
- (2) Modalidad de rotura del material acero.
- (3) La instalación solo está permitida con CAT y HDE.
- (4) Modalidad de rotura del cono de hormigón (concrete cone failure).
- (5) Valor del coeficiente de seguridad del material hormigón válido utilizando CAT en la instalación. Para sistemas de instalación diferentes, utilizar un coeficiente γ_M igual a 1,8.
- (6) Modalidad de rotura por extracción y rotura del cono de hormigón (pull-out and concrete cone failure).
- (7) Factor de aumento de resistencia a la tracción (excluida la rotura del material de acero y cono de hormigón) válido tanto en presencia de hormigón fisurado como no fisurado.

PRINCIPIOS GENERALES

- Los valores característicos respetan la normativa EN 1992-4:2018 con un factor α_{sus}=0,6 en conformidad con ETA-20/1285.

- Los valores de proyecto se obtienen a partir de los valores característicos de la siguiente manera: $R_d = R_k/\gamma_M$.

 Los coeficientes γ_M se indican en la tabla en función de la modalidad de rotura y de acuerdo con los certificados del producto.

 Para el cálculo de anclajes con interejes reducidos, cerca del borde o para la fijación en hormigón con clase de resistencia superior, con espesor reducido o con armadura tupida, consultar el documento ETA.
- Para diseñar anclajes sometidos a carga sísmica, consultar el documento ETA de referencia y lo indicado EN 1992-4:2018.
- Para los datos de los diámetros cubiertos por los diferentes tipos de certificación (hormigón fisurado, no fisurado, aplicación sísmica), consultar los documentos ETA de referencia.

VALORES ESTÁTICOS CARACTERÍSTICOS

Válidos para una sola barra roscada (tipo INA o MGS) cuando se instalan con IR en hormigón C20/25 con armadura rala considerando la separación, la distancia desde el borde y el espesor del hormigón de base como parámetros no limitantes.

HORMIGÓN NO FISURADO(1)

TRACCIÓN

barra	h _{ef}	h _{min} ⁽²⁾	$N_{Rk,s}/N_{Rk,p}$ [kN]				
	[mm]	[mm]	acero 5.8	ΥMs	acero 8.8	Υм	
IR-M8	80	110	17,0	1,5 ⁽³⁾	27,0	$\gamma_{Ms} = 1.5^{(3)}$	
IR-M10	80	116	29,0		35,2	$\gamma_{Mc} = 1.5^{(5)(6)}$	
IR-M12 ⁽⁴⁾	125	169	42,0		67,0	$\gamma_{Ms} = 1,5^{(3)}$	
IR-M16 ⁽⁴⁾	170	226	76,0		109,0	$\gamma_{Mc} = 1.5^{(5)(6)}$	

CORTE

barra	h _{ef}	h _{min} ⁽²⁾	V _{Rk,s} ⁽³⁾ [kN]			
	[mm]	[mm]	acero 5.8	ΥMs	acero 8.8	ΥMs
IR-M8	80	110	9,0		14,0	
IR-M10	80	116	15,0	4.05	23,0	4.05
IR-M12 ⁽⁴⁾	125	169	21,0	1,25	34,0	1,25
IR-M16 ⁽⁴⁾	170	226	38,0		60,0	

HORMIGÓN FISURADO(1)

TRACCIÓN

barra	h _{ef}	h _{min} ⁽²⁾	$N_{Rk,s}/N_{Rk,p}$ [kN]			h _{ef}	N _{Rk,s} ⁽³⁾ [kN]				
	[mm]	[mm]	acero 5.8	Υм	acero 8.8	Υм	[mm]	acero 5.8	ΥMs	acero 8.8	ΥMs
IR-M8	80	110	17,0	$\gamma_{Ms} = 1,5^{(3)}$	19,6	$\gamma_{Mc} = 1.5^{(6)(7)}$	≥ 120	17,0		27,0	
IR-M10	80	116	24,6	$\gamma_{Mc} = 1,5^{(5)(6)}$	24,6		≥ 150	29,0	4.5	46,0	1 -
IR-M12 ⁽⁴⁾	125	169	42,0	4 = (3)	48,1	$\gamma_{Mc} = 1.5^{(5)(6)}$	≥ 180	42,0	1,5	67,0	1,5
IR-M16 ⁽⁴⁾	170	226	76,0	$\gamma_{Ms} = 1.5^{(3)}$	76,3		≥ 250	76,0		121,0	

CORTE

barra	h _{ef}	h _{min} ⁽²⁾	V _{Rk,s} ⁽³⁾ [kN]				
	[mm]	[mm]	acero 5.8	ΥMs	acero 8.8	ΥMs	
IR-M8	80	110	9,0		14,0	1,25	
IR-M10	80	116	15,0	1,25	23,0		
IR-M12 ⁽⁴⁾	125	169	21,0		34,0		
IR-M16 ⁽⁴⁾	170	226	38,0		60,0		

factor de aumento para N _{Rk,p} (8)				
	C25/30	1,02		
	C30/37	1,04		
Ψ_{c}	C40/50	1,08		
	C50/60	1,10		

- $^{(1)}\,$ Para el uso de barras de adherencia mejorada, consultar el documento ETA de referencia
- (2) Espesor mínimo del soporte de hormigón.
 (3) Modalidad de rotura del material acero.
- (4) La instalación solo está permitida con CAT y HDE.

- (5) Modalidad de rotura del cono de hormigón (concrete cone failure).
 (6) Valor del coeficiente de seguridad del material hormigón válido utilizando CAT en la instalación. Para sistemas de instalación diferentes, utilizar un coeficiente γ_M igual a 1,8.
- (7) Modalidad de rotura por extracción y rotura del cono de hormigón (pull-out and concrete cone failure).
- (8) Factor de aumento de resistencia a la tracción (excluida la rotura del material de acero) válido tanto en presencia de hormigón fisurado como no fisurado.

PRINCIPIOS GENERALES

- Los valores característicos respetan la normativa EN 1992-4:2018 con un factor α_{sus}=0,6 en conformidad con ETA-20/1285.
 Los valores de proyecto se obtienen a partir de los valores característicos de la siguiente manera: R_α = R_k/Y_M.
 Los coeficientes γ_M se indican en la tabla en función de la modalidad de rotura y de acuerdo con los certificados del producto.
 Para el cálculo de anclajes con interejes reducidos, cerca del borde o para la fijación en hormigón con clase de resistencia superior, con espesor reducido o con armadura tupida, consultar el documento ETA.
- Para diseñar anclajes sometidos a carga sísmica, consultar el documento ETA de referencia y lo indicado EN 1992-4:2018.

 Para los datos de los diámetros cubiertos por los diferentes tipos de certificación (hormigón fisurado, no fisurado, aplicación sísmica), consultar los documentos ETA de referencia.

