V-NEX

ANCLAJE QUÍMICO A BASE DE VINILÉSTER SIN ESTIRENO

- CE opción 1 para hormigón fisurado y no fisurado
- Uso certificado para barras roscadas y hierros de armadura postinstalados según ETA-20/0363 Opción 1
- Categoría de prestación sísmica C2 (M12-M16)
- Conformidad con los requisitos LEED®, IEQ Credit 4.1
- Clase A+ para emisiones de compuestos orgánicos volátiles (VOC) en entornos urbanos
- Uso certificado para albañilería en materiales macizos y semimacizos (categoría de uso b, c y d)
- Hormigón seco, húmedo o con agujeros sumergidos
- Certificado para el uso en bloques de hormigón aireado en autoclave (AAC)

CÓDIGO	formato [mL]	unid.		
VNEX300	300			
VNEX420	420	12		

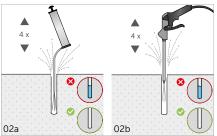
Validez desde la fecha de producción: 12 meses para 300 ml, 18 meses para 420 ml. Temperatura de almacenamiento comprendida entre +5 y 25 °C. Boquilla incluida en el paquete.

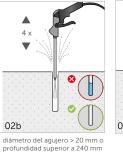
ACCESORIOS DISPONIBLES

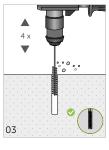
CÓDIGO	descripción	unid.
STING	boquilla de recambio para cartuchos de 300 y 420 ml	1

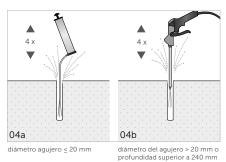
FLY LITE
PISTOLA PROFESIONAL
PARA CARTUCHOS DE
310 ml

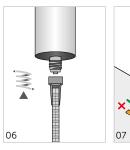
INA
BARRA ROSCADA CL.
5.8 CON TUERCA Y
ARANDELA

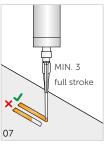

IHM | IHP

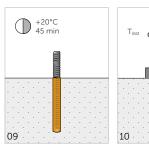

CASQUILLOS PARA
MATERIALES PERFORADOS

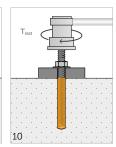


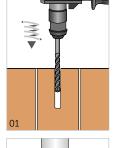

MONTAJE HORMIGÓN

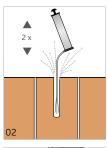


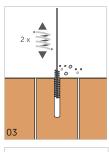




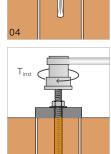

diámetro agujero ≤ 20 mm

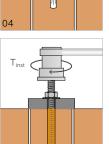


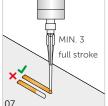

05

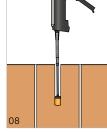


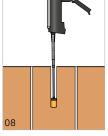
06

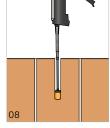

ALBAÑILERÍA MACIZA

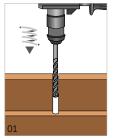


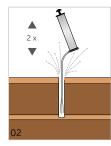


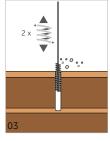


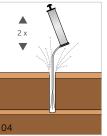

+20°C 45 min

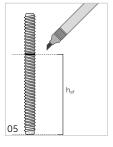


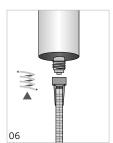


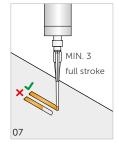


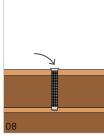


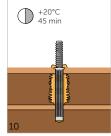


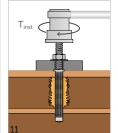

ALBAÑILERÍA PERFORADA





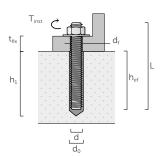


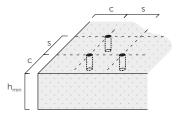




INSTALACIÓN

d diámetro anclaje


 ${f d_0}$ diámetro del agujero en el soporte de hormigón


 $\mathbf{h}_{\mathsf{ef,min}}$ profundidad efectiva de anclaje

 $\mathbf{d_f}$ diámetro del agujero en el elemento a fijar

 $\begin{array}{ll} T_{inst} & \text{par de apriete m\'aximo} \\ L & \text{longitud del anclaje} \\ t_{fix} & \text{espesor m\'aximo fijable} \end{array}$

h₁ profundidad mínima del agujero

d	[mm]	M8	M10	M12	M16	M20	M24
d ₀	[mm]	10	12	14	18	24	28
h _{ef,min}	[mm]	60	60	70	80	90	96
h _{ef,max}	[mm]	160	200	240	320	400	480
d _f	[mm]	9	12	14	18	22	26
T _{inst}	[Nm]	10	20	40	80	120	160

			M8	M10	M12	M16	M20	M24
Intereje mínimo	S _{min}	[mm]	40	50	60	80	100	120
Distancia mínima desde el borde	c _{min}	[mm]	40	50	60	80	100	120
Espesor mínimo del soporte de hormigón	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm		$h_{ef} + 2 d_0$			

Para distancias interejes y distancias menores de las críticas, habrá reducciones en los valores de resistencia a causa de los parámetros de instalación.

TIEMPOS Y TEMPERATURAS DE COLOCACIÓN

temperatura de soporte	temperatura cartucho	tiempo de trabajabilidad	tiempo de espera aplicación de la carga
-5 ÷ -1 °C(*)		90 min	6 h
0 ÷ +4 °C		45 min	3 h
+5 ÷ +9 °C		25 min	2 h
+10 ÷ +14 °C		20 min	100 min
+15 ÷ +19 °C	+5 ÷ +40	15 min	80 min
+20 ÷ +29 °C		6 min	45 min
+30 ÷ +34 °C		4 min	25 min
+35 ÷ +39 °C		2 min	20 min

^(*)Temperaturas no permitidas para albañilería.

Clasificación del componente A: Skin Sens. 1; Aquatic Chronic 3. May cause an allergic skin reaction. Harmful to aquatic life with long lasting effects. Clasificación del componente B: Eye Irrit. 2; Skin Sens. 1. Causes serious eye irritation. May cause an allergic skin reaction.

VALORES ESTÁTICOS CARACTERÍSTICOS

Válidos para una sola barra roscada (tipo INA o MGS) cuando se instalan en hormigón C20/25 con armadura dispersa considerando la separación, la distancia desde el borde y el espesor del hormigón de base como parámetros no limitantes.

HORMIGÓN NO FISURADO⁽¹⁾

TRACCIÓN

barra	h _{ef,standar}		N _{Rk,p} ⁽²⁾ [kN]			h _{ef,max}		³⁾ [kN]		
	[mm]	acero 5.8	Y _{Мр}	acero 8.8	Υ _{Mp}	[mm]	acero 5.8	Υ _{Ms}	acero 8.8	Υ _{Ms}
M8	80	17,1		17,1		160	18		29	
M10	90	22,6		22,6		200	29		46	
M12	110	33,2	4.0	33,2	1.0	240	42	1	67	1
M16	128	51,5	1,8	51,5	1,8	320	79	1,5	125	1,5
M20	170	85,5		85,5		400	123		196	
M24	210	126,7		126,7	.7	480	177		282	

CORTE

barra	h _{ef}	V _{Rk,s} (3) [kN]					
	[mm]	acero 5.8	γ_{Ms}	acero 8.8	γ_{Ms}		
M8	≥60	11		15			
M10	≥60	17		23			
M12	≥70	25	4.05	34			
M16	≥80	47	1,25	63	1,25		
M20	≥100	74		98			
M24	≥ 125	106		141			

factor de aumento para N _{Rk,p} ⁽⁴⁾					
	C25/30	1,04			
	C30/37	1,08			
Ψ_{c}	C40/50	1,15			
	C50/60	1,19			

- (1) Para el cálculo de anclajes en albañilería o para el uso de barras de adherencia mejorada, consultar el documento ETA de referencia.
- (2) Rotura combinada (pull-out) y colapso del hormigón.
 (3) Modalidad de rotura del material acero.
- (4) Factor de aumento de resistencia a la tracción (excluida la rotura del material de acero) válido en presencia de hormigón no fisurado.

PRINCIPIOS GENERALES

- Valores característicos de acuerdo con ETA-20/0363.
- Los valores de proyecto se obtienen a partir de los valores característicos de la siguiente manera: $R_d = R_k/\gamma_M$. Los coeficientes γ_M se indican en la tabla en función
- de la modalidad de rotura y de acuerdo con los certificados del producto.

 Para el cálculo de anclajes con interejes reducidos, cerca del borde o para la fijación en hormigón con clase de resistencia superior, con espesor reducido o con armadura tupida, consultar el documento ETA.

VALORES ESTÁTICOS CARACTERÍSTICOS

Válidos para una sola barra roscada (tipo INA o MGS) cuando se instalan en hormigón C20/25 con armadura dispersa considerando la separación, la distancia desde el borde y el espesor del hormigón de base como parámetros no limitantes.

HORMIGÓN FISURADO⁽¹⁾

TRACCIÓN

barra	h _{ef,standar}	N _{Rk,p} ⁽²⁾ [kN]			h _{ef,max}		N _{Rk,s} /N	_{Rk,p} [kN]		
	[mm]	acero 5.8	Υ _{Mp}	acero 8.8	Y _{Мр}	[mm]	acero 5.8	Υ _{Ms}	acero 8.8	Υ _{Ms}
M8	80	9,0	9,0	9,0		160	18,0	1,5(3)	18,1	
M10	90	12,7			200	28,3		28,3	1.0(2)	
M12	110	18,7	1,8	18,7	1,8	240	40,7	1,8(2)	40,7	1,8(2)
M16	128	29,0		29,0		320	72,4		72,4	

CORTE

barra	h _{ef,standar}	V _{Rk,s} [kN]					
	[mm]	acero 5.8	γ_{Ms}	acero 8.8	γ_{Ms}		
M8	80	11		15			
M10	90	17	4.05(3)	23	1,25(3)		
M12	110	25	1,25 ⁽³⁾	34			
M16	128	47		58	1,8(5)		

factor de aumento para N _{Rk,p} ⁽⁴⁾					
	C25/30	1,02			
	C30/37	1,04			
Ψ_{c}	C40/50	107			
	C50/60	1,09			

- (1) Para el uso de barras de adherencia mejorada, consultar el documento ETA de referencia
- (2) Rotura combinada (pull-out) y colapso del hormigón.
 (3) Modalidad de rotura del material acero.
- (4) Factor de aumento de resistencia a la tracción (excluida la rotura del material de acero) válido en presencia de hormigón fisurado.
- (5) Modalidad de rotura por socavación (pry-out).

PRINCIPIOS GENERALES

- Valores característicos de acuerdo con ETA-20/0363.
- Los valores de proyecto se obtienen a partir de los valores característicos de la siguiente manera: $R_d = R_k/\gamma_M$. Los coeficientes γ_M se indican en la tabla en función de la modalidad de rotura y de acuerdo con los certificados del producto.
- Para el cálculo de anclajes con interejes reducidos, cerca del borde o para la fijación en hormigón con clase de resistencia superior, con espesor reducido o con armadura tupida, consultar el documento ETA.
- Para diseñar anclajes sometidos a carga sísmica, consultar el documento ETA de referencia y lo indicado en EN 1992-4.
- Para los datos de los diámetros cubiertos por los diferentes tipos de certificación (hormigón fisurado, no fisurado, aplicación sísmica), consultar los documentos ETA de referencia.

