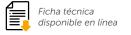
IN/OUT OF STATE OF ST

FRENO DE VAPOR



- Regula el paso de la humedad y evita la formación de condensación intersticial dentro del paquete aislante
- Resiste a los rayos UV y se puede usar directamente sobre entablado
- El producto ofrece una óptima relación calidad/precio

VAPOR HOUSE 150

CÓDIGO	tape	H [m]	L [m]	A [m²]	18
VAPH150	-	1,5	50	75	24
VAPH150	TT	1,5	50	75	24

COMPOSICIÓN

- 1 capa superior: tejido no tejido de PP
- (2) capa intermedia: film freno de vapor de PP
- (3) capa inferior: tejido no tejido de PP

DATOS TÉCNICOS

propiedad	normativa	valor
gramaje	EN 1849-2	150 g/m²
espesor	EN 1849-2	0,5 mm
transmisión de vapor de agua (Sd)	EN 1931	18 m
resistencia a la tracción MD/CD	EN 12311-2	> 250/170 N/50mm
alargamiento MD/CD	EN 12311-2	> 90 / 90 %
resistencia a desgarro por clavo MD/CD	EN 12310-1	> 135/155 N
estanquidad al agua	EN 1928	conforme
resistencia al vapor de agua:		
- después de envejecimiento artificial	EN 1296 / EN 1931	conforme
- en presencia de sustancias alcalinas	EN 1847 / EN 12311-2	conforme
reacción al fuego	EN 13501-1	clase E
resistencia al paso del aire	EN 12114	< 0,02 m ³ /(m ² h50Pa)
resistencia a las temperaturas	-	-20 / +80 °C
estabilidad a los rayos UV ⁽¹⁾	EN 13859-1/2	336h (3 meses)
conductividad térmica (λ)	-	0,3 W/(m·K)
calor específico	-	1800 J/(kg·K)
densidad	-	aprox. 300 kg/m³
factor de resistencia al vapor (μ)	-	aprox. 36000
VOC	-	no relevante

⁽¹⁾Los datos de las pruebas de envejecimiento en laboratorio no logran reproducir las causas de degradación imprevisibles del producto ni tener en cuenta el estrés al que estará sometido durante su vida útil. Para garantizar la integridad, como precaución se recomienda limitar la exposición a los agentes atmosféricos en la obra a un máximo de 3 semanas.