PIE DE PILAR REGULABLE

R60

- Permite la separación con respecto al suelo para evitar salpicaduras o agua estancada y mejorar la durabilidad. Combina excelente resultado estético y bajo coste. También disponible en kits con fijaciones incluidas
- Altura regulable en función de las exigencias funcionales o estéticas
- La base tiene un agujero auxiliar para introducir los tornillos en el pilar (no incluidos)

CÓDIGO	altura	placa superior	agujeros superiores	placa inferior	agujeros inferiores	barra Ø	tornillos	unid.
	[mm]	[mm]	[n. x mm]	[mm]	[mm]	[mm]	(no incluidos)	
R6080M	150 ± 25	80 x 80 x 5	4 x Ø9,5	140 x 100 x 5	4 x Ø12	M16	HBSPEVO680	1
R60100L	200 ± 35	100 x 100 x 6	4 x Ø11,5	160 x 110 x 6	4 x Ø14	M20	KGLPLEVO880	1

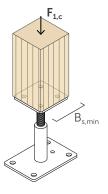
Los tornillos no están incluidos y deben pedirse por separado.

R60 KIT

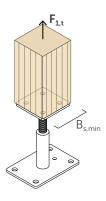
• El kit incluye el pie de pilar con fijaciones tanto para madera como hormigón

CÓDIGO	descripción	unid.
R6080KIT	kit pie de pilar regulable con fijaciones	1

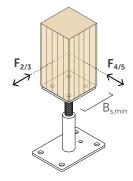
El paquete incluye:



VALORES ESTÁTICOS


RESISTENCIA A LA COMPRESIÓN

pie de pilar	fijación	pilar	R _{1,c k timber}		R _{1,c k steel}	
		B _{s,min}				
		[mm]	[kN]	γ_{timber}	[kN]	γ_{steel}
R6080M	HBSPEVO680	80	126,0	(1)	38,6	Y _{M1}
R60100L	KGLPLEVO880	100	202,0	γ _{MT} ⁽¹⁾	62,3	


RESISTENCIA A LA TRACCIÓN

pie de pilar	fijación	pilar B _{s,min}	R _{1,t k timber}		R _{1,t k steel}	
		[mm]	[kN]	Ytimber	[kN]	Y _{steel}
R6080M	HBSPEVO680	80	4,2	(2)	13,2	
R60100L	KGLPLEVO880	100	6,2	γ _{MC} ⁽²⁾	11,9	Υ _{MO}

RESISTENCIA AL CORTE

pie de pilar	pilar	R _{2/3 k steel} = R _{4/5 k steel}			
	B _{s,min}				
	[mm]	[kN]	γ_{steel}		
R6080M	80	2,42			
R60100L	100	1,98	Y _{MO}		

- $^{(1)}$ y_{MT} coeficiente parcial del material de madera. $^{(2)}$ γ_{MC} coeficiente parcial de las conexiones.

PRINCIPIOS GENERALES

- Los valores característicos respetan la normativa EN 1995-1-1:2014 de acuerdo con ETA-10/0422, salvo los valores de tracción, que se han calculado considerando la resistencia a la extracción de los tornillos HBS PLATE EVO y KGL PLATE EVO paralelos a la fibra de acuerdo con la ETA-11/0030.
- Los valores de proyecto se obtienen a partir de los valores característicos de la siguiente manera:

$$R_d = min \quad \begin{cases} \frac{R_{i,k \text{ timber}} \cdot k_{mod}}{\gamma_M} \\ \frac{R_{i,k \text{ steel}}}{\gamma_{Mi}} \end{cases}$$

 $Los\ coeficientes\ k_{mod}, \gamma_{M}\ y\ \gamma_{Mi}\ se\ deben\ tomar\ de\ acuerdo\ con\ la\ normativa\ vigente\ utilizada\ para\ el\ cálculo.$

- En la fase de cálculo se ha considerado una densidad de los elementos de madera equivalente a $\rho_k = 350 \text{ kg/m}^3$.
- El dimensionamiento y la comprobación de los elementos de madera y de hormigón deben efectuarse por parte.