
**ICS** 



## **TORNILLO CON CABEZA AVELLANADA**

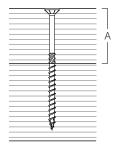
• Gracias a la punta 3 THORNS se reducen las distancias mínimas de instalación. Se pueden usar más tornillos en menos espacio y tornillos más grandes en elementos más pequeños

- Nueva punta, rosca asimétrica especial, fresa avellanadora alargada y estrías cortantes bajo cabeza garantizan una resistencia a la torsión del tornillo y un atornillado seguro
- Acero inoxidable de tipo austenítico A2. Ofrece alta resistencia a la corrosión
- Adecuado para aplicaciones en exteriores hasta 1 km del mar en clase C4 y en la mayoría de maderas ácidas de clase T4
- Para aplicaciones en tablas de madera con densi $dad < 470 \text{ kg/m}^3 \text{ (sin pre-agujero) } y < 620 \text{ kg/m}^3$ (con pre-agujero)



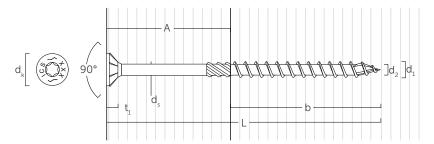
AMBIENTE








MATERIAL




A espesor máximo fijable



| d <sub>1</sub> | d <sub>K</sub> | CÓDIGO  | L    | b    | Α    | unid. |
|----------------|----------------|---------|------|------|------|-------|
| [mm]           | [mm]           |         | [mm] | [mm] | [mm] |       |
| 4<br>TX20      | 8,00           | ICS4040 | 40   | 24   | 16   | 500   |
|                |                | ICS4050 | 50   | 30   | 20   | 400   |
| 4,5<br>TX 20   | 9,00           | ICS4550 | 50   | 30   | 20   | 200   |
|                |                | ICS4560 | 60   | 35   | 25   | 200   |
| 5<br>TX 25     | 10,00          | ICS5050 | 50   | 24   | 26   | 200   |
|                |                | ICS5060 | 60   | 30   | 30   | 200   |
|                |                | ICS5070 | 70   | 35   | 35   | 100   |
|                |                | ICS5080 | 80   | 40   | 40   | 100   |

# GEOMETRÍA Y CARACTERÍSTICAS MECÁNICAS



| diámetro nominal                                     | $d_1$               | [mm]                 | 4    | 4,5  | 5     |
|------------------------------------------------------|---------------------|----------------------|------|------|-------|
| diámetro cabeza                                      | d <sub>K</sub>      | [mm]                 | 8,00 | 9,00 | 10,00 |
| diámetro núcleo                                      | $d_2$               | [mm]                 | 2,55 | 2,80 | 3,40  |
| diámetro cuello                                      | d <sub>S</sub>      | [mm]                 | 2,75 | 3,15 | 3,65  |
| espesor cabeza                                       | t <sub>1</sub>      | [mm]                 | 3,80 | 4,25 | 4,65  |
| diámetro pre-agujero <sup>(1)</sup>                  | d <sub>V</sub>      | [mm]                 | 2,5  | 3,0  | 3,0   |
| momento plástico característico                      | $M_{y,k}$           | [Nm]                 | 1,9  | 2,8  | 4,4   |
| parámetro típico de resistencia a la extracción      | $f_{ax,k}$          | [N/mm <sup>2</sup> ] | 17,1 | 17,2 | 17,9  |
| densidad asociada                                    | $\rho_{\text{a}}$   | [kg/m³]              | 410  | 410  | 440   |
| parámetro característico de penetración de la cabeza | f <sub>head,k</sub> | [N/mm <sup>2</sup> ] | 13,4 | 18,0 | 17,6  |
| densidad asociada                                    | $\rho_{\text{a}}$   | [kg/m³]              | 390  | 440  | 440   |
| resistencia característica de tracción               | f <sub>tens,k</sub> | [kN]                 | 3,2  | 4,4  | 5     |

<sup>(1)</sup> Pre-agujero válido para madera de conífera (softwood).

## **VALORES ESTÁTICOS**

|                |      | CORTE TRACCIÓN |      |                  | CIÓN                                  |                                   |  |
|----------------|------|----------------|------|------------------|---------------------------------------|-----------------------------------|--|
| geometría      |      |                |      | madera-madera    | extracción de la rosca <sup>(1)</sup> | penetración cabeza <sup>(2)</sup> |  |
|                |      |                | A    |                  |                                       |                                   |  |
| d <sub>1</sub> | L    | b              | Α    | R <sub>V,k</sub> | R <sub>ax,k</sub>                     | $R_{head,k}$                      |  |
| [mm]           | [mm] | [mm]           | [mm] | [kN]             | [kN]                                  | [kN]                              |  |
| 4              | 40   | 24             | 16   | 0,69             | 1,56                                  | 0,85                              |  |
| 4              | 50   | 30             | 20   | 0,76             | 1,95                                  | 0,85                              |  |
| 4.5            | 50   | 30             | 20   | 0,95             | 2,21                                  | 1,31                              |  |
| 4,5            | 60   | 35             | 25   | 1,04             | 2,58                                  | 1,31                              |  |
| 5              | 50   | 24             | 26   | 1,21             | 1,93                                  | 1,58                              |  |
|                | 60   | 30             | 30   | 1,35             | 2,41                                  | 1,58                              |  |
|                | 70   | 35             | 35   | 1,35             | 2,82                                  | 1,58                              |  |
|                | 80   | 40             | 40   | 1,35             | 3,22                                  | 1,58                              |  |

### **NOTAS**

- $^{(1)}$  La resistencia axial a la extracción de la rosca se ha evaluado considerando un ángulo  $\epsilon$  de 90° entre las fibras y el conector y con una longitud de penetración igual a b.
- (2) La resistencia axial de penetración de la cabeza ha sido evaluada sobre el elemento de madera.

### **PRINCIPIOS GENERALES**

- Valores característicos según la norma EN 1995:2014.
- Los valores de proyecto se obtienen a partir de los valores característicos de la siguiente manera:

$$R_d = \frac{R_k \cdot k_{mod}}{V_{tot}}$$

Los coeficientes  $\gamma_M$  y  $k_{mod}$  se deben tomar de acuerdo con la normativa vigente utilizada para el cálculo. Valores de resistencia mecánica y geometría de los tornillos de acuerdo con el marcado CE según EN 14592.

- En la fase de cálculo se ha considerado una densidad de los elementos de madera equivalente a  $\rho_k$  = 385 kg/m<sup>3</sup>.
- Los valores han sido calculados considerando la parte roscada completamente introducida en el elemento de madera.
- El dimensionamiento y el calculo de los elementos de madera deben efectuarse por separado.
- Las resistencias características al corte se evalúan para tornillos insertados sin pre-agujero.
- Los tornillos deben colocarse con respecto a las distancias mínimas.