
MINI

MINI

TORNILLO DOBLE ROSCA CABEZA OCULTA

- Versión de acero inoxidable A4 | AISI316 para ambientes con elevada corrosividad atmosférica o de la madera
- La rosca inversa bajo cabeza garantiza una excelente capacidad de tiro. Cabeza cónica invertida de pequeñas dimensiones para un óptimo efecto de ocultamiento
- El cuerpo trilobular permite cortar las fibras de la madera durante el atornillado.
- Uso en tablas de madera con densidad
 780 kg/m³ (sin pre-agujero) y < 880 kg/m³ (con pre-agujero). Aplicable en tablas de WPC, con pre-agujero
- Disponible en versión encintada MINI STRIP para aumentar la velocidad de colocación

 $\mathsf{d_1}$ MINI COLOR

b

negro


verde

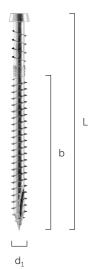
arena

A espesor máximo fijable

MINI COLOR

AMBIENTE

MATERIAL

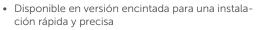

d ₁	d _K	CÓDIGO	L	b	Α	color	unid.
[mm]	[mm]		[mm]	[mm]	[mm]		
		MNB550	53	35	18	•	200
5 TX 20	6,75	MNB560	60	40	20	•	200
.,, _0		MNB570	70	50	25	•	100
		MNN540 ^(*)	43	36	16	•	200
5 TX 20	6,75	MNN550	53	35	18	•	200
1,7,20		MNN560	60	40	20	•	200
		MNV550	53	35	18	•	200
5 TX 20	6,75	MNV560	60	40	20	•	200
.,, _0		MNV570	70	50	25	•	100
		KKTS550	53	35	18		200
5 TX 20	6,75	KKTS560	60	40	20		200
1,7,20		KKTS570	70	50	25		100
		KKTG550	53	35	18	•	200
5 TX 20	6,75	KKTG560	60	40	20	•	200
17.20		KKTG570	70	50	25	•	200

NCLUDED

(*)Tornillo de rosca total.

NOTA: en superficies y acabados verticales, como fachadas, los residuos de revestimiento causados por la instalación del tornillo pueden provocar manchas oscuras cerca de la fijación.

MINI A4 | AISI316


MINI A4 | AISI316

d ₁	d _K	CÓDIGO	L	b	Α	unid.			
[mm]	[mm]		[mm]	[mm]	[mm]				
		KKTX520A4(*)	20	16	4	200			
5	6,75	MNA550	53	35	18	200			
TX 20	0,73	0,73	0,75	0,75	MNA560	60	40	20	200
		MNA570	70	50	25	100			

^(*)Tornillo de rosca total.

MINI COLOR STRIP

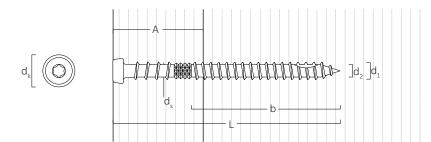
TORNILLO DOBLE ROSCA CON CABEZA OCULTA VERSIÓN **ENCINTADA**

• Ideal para proyectos de grande tamaño

MINI COLOR STRIP

d ₁	d _K	CÓDIGO	L	b	А	color	unid.
[mm]	[mm]		[mm]	[mm]	[mm]		
5 TX 20	6.75	KKTMSTRIP540	43	25	16	•	800
	0,/5	KKTMSTRIP550	53	35	18	•	800

SNAP CONECTOR Y DISTAN-CIADOR OCULTO PARA TERRAZAS



FLAT CONECTOR OCULTO PARA TERRAZAS

BIT STOP DISPOSITIVO DE ATOR-NILLADO AUTOMÁTICO CON TOPE DE PROFUN-DIDAD

GEOMETRÍA Y CARACTERÍSTICAS MECÁNICAS

			MINI A4	MINI COLOR
diámetro nominal	d ₁	[mm]	5,1	5,1
diámetro cabeza	d _K	[mm]	6,75	6,75
diámetro núcleo	d ₂	[mm]	3,40	3,40
diámetro cuello	d _S	[mm]	4,05	4,05
diámetro pre-agujero ⁽¹⁾	d _V	[mm]	3,0 - 4,0	3,0 - 4,0
momento plástico característico	$M_{y,k}$	[Nm]	5,8	8,4
parámetro característico de resistencia a extracción	$f_{ax,k}$	[N/mm ²]	13,7	14,7
densidad asociada	ρ_{a}	[kg/m³]	350	400
parámetro característico de penetración de la cabeza	f _{head,k}	[N/mm ²]	23,8	68,8
densidad asociada	ρ_{a}	[kg/m³]	350	730
resistencia característica de tracción	f _{tens,k}	[kN]	7,8	9,6

⁽¹⁾Sobre materiales de densidad elevada se recomienda pre-perforar en función del tipo de madera.

VALORES ESTÁTICOS

MINI COLOR				со	RTE	TRACCIÓN		
geometría				madera-madera sin pre-agujero	madera-madera con pre-agujero	extracción de la rosca ⁽¹⁾	penetración cabeza incl. extracción de la rosca superior ⁽²⁾	
			A			↑ 1 1 1 1 1 1 1 1 1 1		
d_1	L	b	Α	R _{V,k}	R _{V,k}	$R_{ax,k}$	R _{head,k}	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	53	35	18	1,22	1,48	2,67	1,05	
5	60	40	20	1,25	1,53	3,06	1,05	
	70	50	25	1,34	1,68	3,82	1,05	

NOTAS

- (1) La resistencia axial a la extracción de la rosca se ha evaluado considerando un ángulo ε de 90° entre las fibras y el conector y con una longitud de penetración
- igual a b. (2) En la fase de cálculo se ha considerado un parámetro característico de penetración de la cabeza igual a 20 N/mm² con una densidad asociada de ρ_a = 350 kg/m³.

- Valores característicos según la norma EN 1995:2014.
- Los valores de proyecto se obtienen a partir de los valores característicos de la siguiente manera:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

- Los coeficientes γ_M y k_{mod} se deben tomar de acuerdo con la normativa vigente utilizada para el cálculo.
- Valores de resistencia mecánica y geometría de los tornillos de acuerdo con el marcado CE según EN 14592.
- En la fase de cálculo se ha considerado una masa volúmica de los elementos de madera equivalente a $\rho_k = 420 \text{ kg/m}^3$.
- Los valores han sido calculados considerando la parte roscada completamente introducida en el elemento de madera.
- El dimensionamiento y el calculo de los elementos de madera y de las placas de acero deben efectuarse por separado.
- Los tornillos deben colocarse con respecto a las distancias mínimas.
- Los tornillos con doble rosca se utilizan principalmente para uniones madera-madera.
- Los tornillos MNN540 y KKT X de rosca total se utilizan principalmente para placas de acero (por ejemplo, en sistema para terrazas TERRALOCK/FLAT).

VALORES ESTÁTICOS

MINI A4				CO	RTE	TRACCIÓN		
geometría				madera-madera sin pre-agujero	madera-madera con pre-agujero	extracción de la rosca ⁽¹⁾	penetración cabeza incl. extracción de la rosca superior	
d ₁	L	b	Α	R _{V,k}	R _{V,k}	R _{ax,k}	$R_{head,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	53	35	18	1,16	1,40	2,77	1,25	
5	60	40	20	1,19	1,46	3,17	1,25	
	70	50	25	1,41	1,77	3,96	1,25	

	MNN540		co.	RTE	TRACCIÓN	
geometría			acero-ı placa inte	madera ermedia ⁽³⁾	extracción de la rosca ⁽¹⁾	
	- '					
d ₁	L	b	$R_{V,k}$		R _{ax,k}	
[mm]	[mm]	[mm]	[k	N]	[kN]	
5	40	36	$S_{PLATE} = 3.0 \text{ mm}$	1,50	2,75	

	KKTX520A4		со	RTE	TRACCIÓN		
	geometría		acero-madera placa intermedia ⁽³⁾		extracción de la rosca ⁽¹⁾		
	□ □ □ □ □ □ □ S _{PLATE}						
d ₁	L	b	R _{V,k}		R _{ax,k}		
[mm]	[mm]	[mm]	[k	N]	[kN]		
5	20	16	S _{PLATE} = 3,0 mm	0,74	1,27		

NOTAS

 $^{^{(1)}}$ La resistencia axial a la extracción de la rosca se ha evaluado considerando un ángulo ϵ de 90° entre las fibras y el conector y con una longitud de penetración

igual a b.

(2) En la fase de cálculo se ha considerado un parámetro característico de penetración de la cabeza igual a 20 N/mm² con una densidad asociada de ρ_a = 350 kg/m³.

(3) Las resistencias características al corte son evaluadas considerando el caso de placa intermedia (0,5 d₁ \leq S_{PLATE} \leq d₁).