SNK EVO

TORNILLO PARA MADERA DE CABEZA AVELLANADA

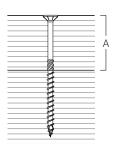
- Prestaciones mecánicas equivalentes a las de los tornillos SNK con resistencia a la corrosión del revestimiento EVO a base de resina epóxica y partículas de aluminio
- Con la punta 3 THORNS, el agarre de los tornillos es más fiable y rápido, aunque se mantienen las prestaciones mecánicas habituales
- Revestimiento adecuado para aplicaciones en exteriores (zonas costeras e industriales) en maderas con un pH superior a 4, como abeto, alerce y pino
- Ausencia de herrumbre tras 1440 horas de exposición en niebla salina (ISO 9227)

CÓDIGO

SNKEVO550

SNKEVO560

SNKEVO570


SNKEVO580

d₁

AMBIENTE

MATERIAL

 d_1

[mm]

5

TX 25

 d_{K}

[mm]

10,00

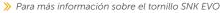
35

100

100

35

NOTA: para más información y otros códigos, véase SNK EVO en el capítulo "TORNILLOS PARA MADERA"

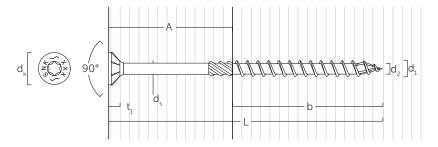

70

NOTA: en superficies y acabados verticales, como fachadas, los residuos de revestimiento causados por la instalación del tornillo pueden provocar manchas oscuras cerca de la fijación.

SNK EVO BUCKET

TORNILLOS SNK EVO ENVASADOS EN CUBETAS

• Los tornillos también se pueden utilizar en terrazas



d ₁	d _K	CÓDIGO	L	b	unid.
[mm]	[mm]		[mm]	[mm]	
5 TX 25	10,00	SNKEVOBUC550	50	24	1400
		SNKEVOBUC560	60	30	1300
		SNKEVOBUC570	70	35	600
		SNKEVOBUC580	80	40	600

GEOMETRÍA Y CARACTERÍSTICAS MECÁNICAS

diámetro nominal	d_1	[mm]	5
diámetro cabeza	d _K	[mm]	10,00
diámetro núcleo	d ₂	[mm]	3,40
diámetro cuello	d _S	[mm]	3,65
espesor cabeza	t ₁	[mm]	3,10
diámetro pre-agujero ⁽¹⁾	d _V	[mm]	3,0
momento plástico característico	$M_{y,k}$	[Nm]	5,4
parámetro característico de resistencia a extracción ⁽²⁾	f _{ax,k}	[N/mm ²]	11,7
densidad asociada	ρ_{a}	[kg/m³]	350
parámetro característico de penetración de la cabeza ⁽²⁾	f _{head,k}	[N/mm ²]	10,5
densidad asociada	ρ_{a}	[kg/m³]	350
resistencia característica de tracción	f _{tens,k}	[kN]	7,9

⁽¹⁾Pre-agujero válido para madera de conífera (softwood).

Para aplicaciones con materiales diferentes o con densidad alta, consultar ETA-11/0030.

VALORES ESTÁTICOS

CORTI				CORTE		TRACCIÓN	
geometría				madera-madera	extracción de la rosca ⁽¹⁾	penetración cabeza ⁽²⁾	penetración cabeza con arandela ⁽²⁾
	d ₁						
d ₁	L	b	Α	R _{V,k}	R _{ax,k}	R _{head,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
5	50	24	26	1,29	1,52	1,13	-
	60	30	30	1,46	1,89	1,13	-
	70	35	35	1,46	2,21	1,13	-
	80	40	40	1,46	2,53	1,13	-

NOTAS

- $^{(1)}$ La resistencia axial a la extracción de la rosca se ha evaluado considerando un ángulo ϵ de 90° entre las fibras y el conector y con una longitud de penetración iqual a b.
- (2) La resistencia axial de penetración de la cabeza, con y sin arandela, ha sido evaluada sobre el elemento de madera.

PRINCIPIOS GENERALES

- Los valores característicos respetan la normativa EN 1995:2014 conforme con ETA-11/0030.
- Los valores de proyecto se obtienen a partir de los valores característicos de la siguiente manera:

$$R_d = \frac{R_k \cdot k_{mod}}{V_{tot}}$$

- Los coeficientes y_M y k_{mod} se deben tomar de acuerdo con la normativa vigente utilizada para el cálculo. Para los valores de resistencia mecánica y para la geometría de los tornillos se han tomado como referencia las indicaciones de ETA-11/030.
- En la fase de cálculo se ha considerado una densidad de los elementos de madera equivalente a ρ_k = 385 kg/m³.
- Los valores han sido calculados considerando la parte roscada completamente introducida en el elemento de madera.
- El dimensionamiento y el calculo de los elementos de madera deben efectuarse por separado.
- Las resistencias características al corte se evalúan para tornillos insertados sin pre-agujero.
- Los tornillos deben colocarse con respecto a las distancias mínimas.

⁽²⁾Válido para madera de conífera (softwood) - densidad máxima 440 kg/m³.