SOUNDPROOFING

ADJUSTABLE POST BASE

R60

- Allows ground clearance to prevent water splash and stagnation, improving durability. Combines visual appeal with low cost. Also available in a kit with fasteners
- Height adjustable according to functional or aesthetic needs
- The base is characterised by an auxiliary hole for inserting screws into the column (not included)

MATERIAL

4 x Ø11,5

Fe/Zn12c

4 x Ø14

							ALC: U.S. Company	1000
CODE	height	top plate	top holes	bottom plate	lower holes	rod Ø	screws	pcs
	[mm]	[mm]	[n. x mm]	[mm]	[mm]	[mm]	(not included)	
R6080M	150 ± 25	80 x 80 x 5	4 x Ø9,5	140 x 100 x 5	4 x Ø12	M16	HBSPEVO680	1

160 x 110 x 6

Screws are not included and must be ordered separately.

100 x 100 x 6

200 + 35

R60 KIT

SERVICE CLASS

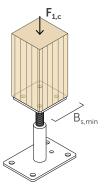
R60100L

• The kit includes the post base complete with fasteners for both timber and concrete

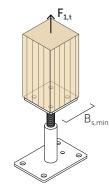
CODE	description	pcs
R6080KIT	adjustable post base kit complete with fasteners	1

Package include:

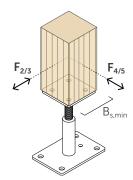
KGLPLEVO880


M20

STRUCTURAL VALUES


COMPRESSION STRENGTH

post base	fastening	column B _{s,min}	R _{1,c k timber}		R _{1,c k steel}	
		[mm]	[kN]	Y _{timber}	[kN]	γ_{steel}
R6080M	HBSPEVO680	80	126,0	(1)	38,6	
R60100L	KGLPLEVO880	100	202,0	γ _{MT} ⁽¹⁾	62,3	Y _{M1}


TENSILE STRENGTH

post base	fastening	column B _{s,min}	R _{1,t k timber}		R _{1,t k steel}	
		[mm]	[kN]	Ytimber	[kN]	Y _{steel}
R6080M	HBSPEVO680	80	4,2	(2)	13,2	.,
R60100L	KGLPLEVO880	100	6,2	Υ _{MC} ⁽²⁾	11,9	Y _{M0}

SHEAR STRENGTH

post base column		R _{2/3 k steel} = R _{4/5 k steel}				
	B _{s,min}					
	[mm]	[kN]	$\gamma_{\sf steel}$			
R6080M	80	2,42				
R60100L	100	1,98	У мо			

- $^{(1)}$ γ_{MT} partial coefficient of the timber. $^{(2)}$ γ_{MC} partial coefficient for connections.

GENERAL PRINCIPLES

- The characteristic values are according to EN 1995-1-1:2014 and according to ETA-10/0422, except for the tensile values calculated considering the pull-out strength of the HBS PLATE EVO and KGL PLATE EVO screws parallel to the grain according to ETA-11/0030.
- Design values can be obtained from characteristic values as follows:

$$R_d = min \quad \begin{cases} \frac{R_{i,k \text{ timber}} \cdot k_{mod}}{\gamma_M} \\ \frac{R_{i,k \text{ steel}}}{\gamma_{Mi}} \end{cases}$$

The coefficients k_{mod} , γ_{M} and γ_{Mi} should be taken according to the current regulations used for the calculation.

- A timber density of ρ_k = 350 kg/m³ was considered for the calculation process.
- Dimensioning and verification of timber and concrete elements must be carried out separately.