H-NEX

HIGH-PERFORMANCE HYBRID CHEMICAL ANCHOR

- Urethane-methacrylate based resin
- CE option 1 for cracked and uncracked concrete
- C2 Seismic performance category (M12-M24)
- Certified fire resistance F120
- Complies with LEED® v4.1 BETA
- A+ Class: emission of volatile organic compounds (VOC) in living environments
- Ideal for extra-heavy anchors and post-installed reinforcement rods
- Excellent long-term creep behaviour
- Dry or wet concrete
- Concrete with submerged holes
- Appliation from below allowed.
- · Certified installation also with hollow drill bit

CODE	format [ml]	pcs
HNEX280	280	12
HNEX420	420	12

Shelf life from date of manufacture: 18 months. Storage temperature between +5 and 25° C. Nozzle included in the package.

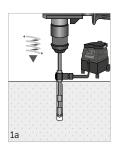
AVAILABLE ACCESSORIES

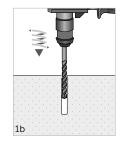
CODE	description	pcs
STING	spare nozzle for 280 and 420 ml cartridges	1

FLY LITE
PROFESSIONAL GUN FOR
310 ml CARTRIDGES

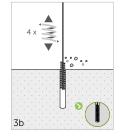
INA
THREADED ROD CL. 5.8
WITH NUT AND WASHER

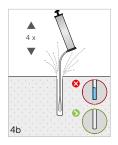
IHM | IHP
BUSHINGS FOR
PERFORATED MATERIALS

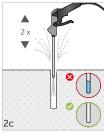


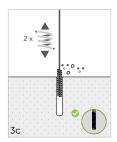

ASSEMBLY

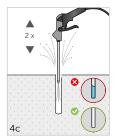

 $\label{thm:continuous} \mbox{Hole execution: three different installation possibilities.}$


a. INSTALLATION WITH HOLLOW DRILL BIT (HDE)

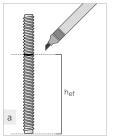

b. ASSEMBLY WITH HP + BRUH (valid only for uncracked concrete, hole diameter \leq 20 mm, hole depth \leq 10 d)



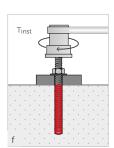




c. ASSEMBLY WITH CAT + BRUH



Rod installation:



INSTALLATION TIME AND TEMPERATURE

		curing time b	efore loading	
support temperature	workability time	dry support	wet support	
-5 ÷ -1 °C	50 min	5 h	10 h	
0 ÷ +4 °C	25 min	3,5 h	7 h	
+5 ÷ +9 ℃	15 min	2 h	4 h	
+10 ÷ +14 °C	10 min	1 h	2 h	
+15 ÷ +19 °C	6 min	40 min	80 min	
+20 ÷ +29 °C	3 min	30 min	60 min	
+30 ÷ +40 °C	2 min	30 min	60 min	

Cartridge storage temperature +5 - +40°.

НС

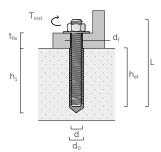
INSTALLATION

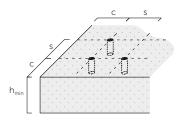
INSTALLATION GEOMETRY FEATURES ON CONCRETE

THREADED RODS (INA or MGS TYPE)

d anchor diameter

 ${f d_0}$ hole diameter in the concrete support


 $\mathbf{h}_{\mathrm{ef,min}}$ effective anchor depth


 $\mathbf{d_f}$ diameter hole in the element to be fastened

T_{inst} maximum tightening torque

L anchor length

 $egin{array}{ll} {\bf t_{fix}} & {
m maximum fastening thickness} \\ {f h_1} & {
m minimum hole depth} \end{array}$

d	[mm]	M8	M10	M12	M16	M20	M24	M27	M30
d ₀	[mm]	10	12	14	18	22	28	30	35
h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
d _f	[mm]	9	12	14	18	22	26	30	33
T _{inst}	[Nm]	10	20	40	60	100	170	250	300

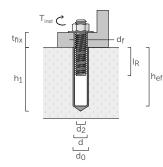
			M8	M10	M12	M16	M20	M24	M27	M30
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance	C _{min}	[mm]	35	40	45	50	60	65	75	80
Minimum thickness of concrete support	h _{min}	[mm]	h _{ef} -	+ 30 ≥ 100	mm			$h_{ef} + 2 d_0$		

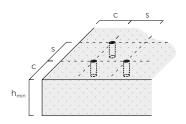
For spacing and distances smaller than the critical ones, strength values have to be reduced depending on the installation parameters.

BUSHING WITH INTERNAL METRIC THREAD (IR TYPE)

d₂ internal threaded rod diameter

d diameter of the element anchored on concrete


d₀ hole diameter in the concrete support


 $\mathbf{h}_{\mathsf{ef,min}}$ effective anchor depth

d_f diameter hole in the element to be fastened

 T_{inst} maximum tightening torque t_{fix} maximum fastening thickness h_1 minimum hole depth

length of internal threaded rod

		IR-M8	IR-M10	IR-M12	IR-M16
d ₂	[mm]	8	10	12	16
d	[mm]	12	16	20	24
d ₀	[mm]	14	18	22	28
h _{ef,min}	[mm]	70	80	90	96
h _{ef,max}	[Nm]	240	320	400	480
d _f	[mm]	9	12	14	18
T _{inst}	[mm]	10	20	40	60
I _{R,min}	[mm]	8	10	12	16
I _{R,max}	[mm]	20	25	30	32

			IR-M8	IR-M10	IR-M12	IR-M16
Minimum spacing	s _{min}	[mm]	60	75	95	115
Minimum edge distance	c _{min}	[mm]	45	50	60	65
Minimum thickness of concrete support	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm		$h_{ef} + 2 d_0$	

For spacing and distances smaller than the critical ones, strength values have to be reduced depending on the installation parameters.

Component A and Component B classification: Skin Sens. 1. May cause an allergic skin reaction.

STRUCTURAL CHARACTERISTIC VALUES

Valid for a single threaded rod (INA or MGS) in very thick C20/25 grade concrete with a thin reinforcing layer when spacing and edge-distance are not limiting parameters.

UNCRACKED CONCRETE(1)

TENSION

rod	h _{ef,standard}		$N_{Rk,p}/N_{Rk,s}$ [kN]			h _{ef}		N _{Rk,s}	²⁾ [kN]	
	[mm]	5.8 steel	Υм	8.8 steel	Υм	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs
M8	80	18,0		29,0	$\gamma_{Ms} = 1.5^{(2)}$	≥ 80	18,0		29,0	
M10	90	29,0	$\gamma_{Ms} = 1.5^{(2)}$ 42.0	42,0		≥ 100	29,0		46,0	
M12	110	42,0		56,8		≥ 130	42,0		67,0	1,5
M16	128	71,2		71,2		≥ 180	78,0	4.5	125,0	
M20 ⁽³⁾	170	109,0		109,0	$\gamma_{Mc} = 1.5^{(4)(5)}$	≥ 250	122,0	1,5	196,0	
M24 ⁽³⁾	210	149,7	$\gamma_{Mc} = 1.5^{(4)(5)}$	149,7		≥ 325	176,0		282,0	
M27 ⁽³⁾	240	182,9		182,9		≥ 390	230,0		368,0	
M30 ⁽³⁾	270	218,2		218,2		≥ 440	280,0		449,0	

SHEAR

rod	h _{ef}		V _{Rk,s} ⁽²	(kN]		
	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs	
M8	≥ 60	11,0		15,0		
M10	≥ 60	17,0		23,0		
M12	≥ 70	25,0		34,0	4.25	
M16	≥ 80	47,0	4.25	63,0		
M20 ⁽³⁾	≥ 100	74,0	1,25	98,0	1,25	
M24 ⁽³⁾	≥ 130	106,0		141,0		
M27 ⁽³⁾	≥ 155	138,0		184,0		
M30 ⁽³⁾	≥ 175	168,0		224,0		

- $^{(1)}$ Refer to the relevant ETA document for use of rebars.
- (2) Steel failure mode.
- (3) Installation is only allowed with CAT and HDE.
 (4) Concrete cone failure method.
- $^{(5)}$ Valid concrete material safety coefficient value using CAT in the installation. For different installation systems, use a coefficient of γ_M equal to 1,8.
- (6) Pull-out and concrete cone failure.
- (7) Tensile-strength increment factor (excluding steel and concrete cone failure) for both cracked and uncracked concrete.

GENERAL PRINCIPLES

- The characteristic values are according to EN 1992-4:2018 with a factor α_{sus} = 0.6 and in accordance with ETA-20/1285. The design values are obtained from the characteristic values as follows: $R_d = R_k/\gamma_M$. Coefficients γ_M are listed in the table in accordance with the failure characteristics and product certificates.

- For the calculation of anchors with reduced spacing, or too close to the edge, please refer to ETA. Similarly, in case of fastening on concrete-supports with a better-grade, limited thickness or a thick reinforcing layer please see ETA.

 For the design of anchors subjected to seismic loading refer to ETA and to EN 1992-4:2018.

 For specifications of the diameters covered by the various certifications (cracked concrete, uncracked concrete, seismic applications), please refer to ETA.

POST BASES AND FENCES

STRUCTURAL CHARACTERISTIC VALUES

Valid for a single threaded rod (INA or MGS) in very thick C20/25 grade concrete with a thin reinforcing layer when spacing and edge-distance are not limiting parameters.

CRACKED CONCRETE(1)

TENSION

rod	h _{ef,standard}		$N_{Rk,p}$ [kN]			h _{ef,max}		N _{Rk,s} /N	I _{Rk,p} [kN]		
	[mm]	5.8 steel	Yмp	8.8 steel	Υм	[mm]	5.8 steel	Υм	8.8 steel	Υм	
M8	80	14,1		14,1		160	18,0		28,2	$\gamma_{Mp} = 1.5^{(5)(6)}$	
M10	90	21,2	$\gamma_{Mp} = 1.5^{(5)(6)}$	21,2	$\gamma_{Mp} = 1.5^{(5)(6)}$	200	29,0		46,0		
M12	110	33,2		33,2		240	42,0		67,0	4 5(2)	
M16	128	49,9		49,9		320	78,0	4.5(2)	125,0	$\gamma_{Ms} = 1.5^{(2)}$	
M20 ⁽³⁾	170	76,3		76,3	76,3		400	122,0	$\gamma_{Ms} = 1.5^{(2)}$	196,0	
M24 ⁽³⁾	210	104,8	$\gamma_{Mc} = 1.5^{(4)(5)}$	104,8	$\gamma_{Mc} = 1.5^{(4)(5)}$	480	176,0		253,3		
M27 ⁽³⁾	240	128,0		128,0		540	230,0		320,6	$\gamma_{Mp} = 1.5^{(5)(6)}$	
M30 ⁽³⁾	270	152,8		152,8		600	280,0		395,8		

SHEAR

rod	h _{ef,standard}		$V_{Rk,s}$	(2) [KN]		
	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs	
M8	80	11,0		15,0		
M10	90	17,0		23,0	1,25	
M12	110	25,0		34,0		
M16	128	47,0	4.05	63,0		
M20 ⁽³⁾	170	74,0	1,25	98,0		
M24 ⁽³⁾	210	106,0		141,0		
M27 ⁽³⁾	240	138,0		184,0		
M30 ⁽³⁾	270	168,0		224,0		

incremental factor for N _{Rk,p} ⁽⁷⁾						
	C25/30	1,02				
Ψ _c	C30/37	1,04				
	C40/50	1,08				
	C50/60	1,10				

- $\overset{(1)}{\dots}$ Refer to the relevant ETA document for use of rebars.
- (2) Steel failure mode.
- (3) Installation is only allowed with CAT and HDE.
 (4) Concrete cone failure method.
- (5) Valid concrete material safety coefficient value using CAT in the installation. For different installation systems, use a coefficient of γ_M equal to 1,8.
- (6) Pull-out and concrete cone failure.
 (7) Tensile-strength increment factor (excluding steel and concrete cone failure) for both cracked and uncracked concrete.

GENERAL PRINCIPLES

- The characteristic values are according to EN 1992-4:2018 with a factor α_{sus}=0.6 and in accordance with ETA-20/1285.
 The design values are obtained from the characteristic values as follows: R_d = R_k/γ_M.
 Coefficients γ_M are listed in the table in accordance with the failure characteristics and product certificates.

- For the calculation of anchors with reduced spacing, or too close to the edge, please refer to ETA. Similarly, in case of fastening on concrete-supports with a
- better-grade, limited thickness or a thick reinforcing layer please see ETA.

 For the design of anchors subjected to seismic loading refer to ETA and to EN 1992-4:2018.

 For specifications of the diameters covered by the various certifications (cracked concrete, uncracked concrete, seismic applications), please refer to ETA.

STRUCTURAL CHARACTERISTIC VALUES

Valid for a single threaded rod (INA or MGS) when installed with IR in C20/25 grade concrete with a thin reinforcing layer, considering spacing, edgedistance, and base-concrete thickness as non-limiting parameters.

UNCRACKED CONCRETE(1)

TENSION

rod	h _{ef}	h _{min} ⁽²⁾	$N_{Rk,s}/N_{Rk,p}$ [kN]				
	[mm]	[mm]	5.8 steel	ΥMs	8.8 steel	Υм	
IR-M8	80	110	17,0	- 1,5 ⁽³⁾	27,0	$\gamma_{Ms} = 1,5^{(3)}$	
IR-M10	80	116	29,0		35,2	$\gamma_{Mc} = 1.5^{(5)(6)}$	
IR-M12 ⁽⁴⁾	125	169	42,0		67,0	$\gamma_{Ms} = 1,5^{(3)}$	
IR-M16 ⁽⁴⁾	170	226	76,0		109,0	$\gamma_{Mc} = 1,5^{(5)(6)}$	

SHEAR

rod	h _{ef}	h _{min} ⁽²⁾	V _{Rk,s} (3) [kN]			
	[mm]	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs
IR-M8	80	110	9,0	1,25	14,0	1,25
IR-M10	80	116	15,0		23,0	
IR-M12 ⁽⁴⁾	125	169	21,0		34,0	
IR-M16 ⁽⁴⁾	170	226	38,0		60,0	

CRACKED CONCRETE(1)

TENSION

rod	h _{ef}	h _{min} ⁽²⁾	$N_{Rk,s}/N_{Rk,p}$ [kN]			h _{ef}	N _{Rk,s} (3) [kN]				
	[mm]	[mm]	5.8 steel	Υм	8.8 steel	Υм	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs
IR-M8	80	110	17,0	$\gamma_{Ms} = 1,5^{(3)}$	19,6	$\gamma_{Mc} = 1.5^{(6)(7)}$	≥ 120	17,0		27,0	
IR-M10	80	116	24,6	$\gamma_{Mc} = 1,5^{(5)(6)}$	24,6		≥ 150	29,0	4.5	46,0	4.5
IR-M12 ⁽⁴⁾	125	169	42,0	4 = (3)	48,1	$\gamma_{Mc} = 1.5^{(5)(6)}$	≥ 180	42,0	1,5	67,0	1,5
IR-M16 ⁽⁴⁾	170	226	76,0	$\gamma_{Ms} = 1,5^{(3)}$	76,3		≥ 250	76,0		121,0	

SHEAR

rod	h _{ef}	h _{min} ⁽²⁾	V _{Rk,s} ⁽³⁾ [kN]			
	[mm]	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs
IR-M8	80	110	9,0		14,0	
IR-M10	80	116	15,0	1 25	23,0	1 25
IR-M12 ⁽⁴⁾	125	169	21,0	1,25	34,0	1,25
IR-M16 ⁽⁴⁾	170	226	38,0		60,0	

incremental factor for N _{Rk,p} ⁽⁸⁾				
	C25/30	1,02		
	C30/37	1,04		
Ψ_{c}	C40/50	1,08		
	C50/60	1,10		

NOTES

- Refer to the relevant ETA document for use of rebars.
- (2) Minimum thickness of concrete support.
- (3) Steel failure mode.
- (4) Installation is only allowed with CAC and HDE. (5) Concrete cone failure method.
- $^{(6)}$ Valid concrete material safety coefficient value using CAT in the installation. For different installation systems, use a coefficient of γ_{M} equal to 1,8.
- (8) Tensile-strength increment factor (excluding steel failure) for both cracked and uncracked concrete.

GENERAL PRINCIPLES

- The characteristic values are according to EN 1992-4:2018 with a factor α_{sus} =0.6 and in accordance with ETA-20/1285. The design values are obtained from the characteristic values as follows: $R_d = R_k/\gamma_M$. Coefficients γ_M are listed in the table in accordance with the failure characteristics and product certificates.

- For the calculation of anchors with reduced spacing, or too close to the edge, please refer to ETA. Similarly, in case of fastening on concrete-supports with a better-grade, limited thickness or a thick reinforcing layer please see ETA.

 For the design of anchors subjected to seismic loading refer to ETA and to EN 1992-4:2018.

 For specifications of the diameters covered by the various certifications (cracked concrete, uncracked concrete, seismic applications), please refer to ETA.