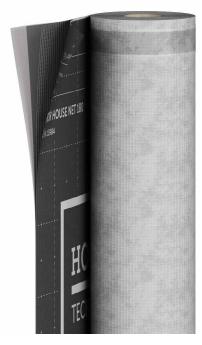
VAPOR HOUSE NET 180

SCHERMO FRENO VAPORE CON RETE DI RINFORZO

• grazie alla sua composizione, è adatto anche per applicazioni su supporti irregolari e ruvidi che potrebbero danneggiare i freni al vapore più leggeri

• La versione TT permette una posa rapida e una sigillatura perfetta grazie al doppio tape integrato, offrendo una soluzione più vantaggiosa rispetto alla posa tradizionale con nastratura



CODICE	tape	Н	L	Α	
		[m]	[m]	[m ²]	
VAPHTT180	TT	1,5	50	75	25

COMPOSIZIONE

- (1) strato superiore: tessuto non tessuto in PP
- (2) armatura: griglia di rinforzo in PP
- (3) strato intermedio: film freno al vapore in PE
- (4) strato inferiore: tessuto non tessuto in PP

DATI TECNICI

proprietà	normativa	valore
grammatura	EN 1849-2	180 g/m²
spessore	EN 1849-2	0,6 mm
trasmissione del vapore d'acqua (Sd) ⁽¹⁾	EN 1931	10 m
resistenza a trazione MD/CD ⁽¹⁾	EN 12311-2	320/300 N/50 mm
allungamento MD/CD ⁽¹⁾	EN 12311-2	10/10 %
resistenza a lacerazione del chiodo MD/CD ⁽¹⁾	EN 12310-1	250/290 N
impermeabilità all'acqua	EN 1928	conforme
resistenza al vapore d'acqua:		
- dopo invecchiamento artificiale	EN 1296/EN 1931	conforme
- in presenza di alcali	EN 1847/EN 12311-2	npd
reazione al fuoco	EN 13501-1	classe E
resistenza al passaggio dell'aria	EN 12114	< 0,02 m³/(m²h50Pa)
resistenza alla temperatura	-	-40/80 °C
stabilità UV ⁽²⁾	EN 13859-1/2	336h (3 mesi)
conduttività termica (λ)	-	0,4 W/(m·K)
calore specifico	-	1700 J/(kg·K)
densità	-	ca. 300 kg/m³
fattore di resistenza al vapore (μ)	-	ca. 16700
VOC	-	non rilevante

⁽¹⁾ Valori medi ottenuti da test di laboratorio. Per conoscere i valori minimi consultare la dichiarazione di prestazione.

Classificazione del rifiuto (2014/955/EU): 17 02 03

⁽²⁾ dati dei test di invecchiamento in laboratorio non riescono a riprodurre le imprevedibili cause di degrado del prodotto né a considerare gli stress che affronterà durante la sua vita utile. Per garantire l'integrità, consigliamo di limitare precauzionalmente l'esposizione agli agenti atmosferici in cantiere a un massimo di 2