
# HEAVY-DUTY EXPANSION ANCHOR WITH CLAMP CE1

- CE option 1 for cracked and uncracked concrete
- Seismic performance category C1 and C2
- Electrogalvanized carbon steel
- Fire resistance R120
- 8.8 grade screw with hexagonal head and washer
- Suitable for dense materials
- Through fastening
- Torque-controlled expansion



## CODES AND DIMENSIONS

| CODE     | $d_0$ | Lt   | $d_{screw}$ | t <sub>fix</sub> | h <sub>1,min</sub> | $h_{nom}$ | $h_{\text{ef}}$ | d <sub>f</sub> | SW   | $T_{inst}$ | pcs |
|----------|-------|------|-------------|------------------|--------------------|-----------|-----------------|----------------|------|------------|-----|
|          | [mm]  | [mm] | [mm]        | [mm]             | [mm]               | [mm]      | [mm]            | [mm]           | [mm] | [Nm]       |     |
| ABS1070  | 10    | 70   | М6          | 5                | 80                 | 65        | 55              | 12             | 10   | 15         | 50  |
| ABS10100 | 10    | 100  | M6          | 35               | 80                 | 65        | 55              | 12             | 10   | 15         | 50  |
| ABS12100 | 12    | 100  | M8          | 30               | 90                 | 70        | 60              | 14             | 13   | 30         | 50  |
| ABS12120 | 12    | 120  | M8          | 50               | 90                 | 70        | 60              | 14             | 13   | 30         | 25  |
| ABS16120 | 16    | 120  | M10         | 40               | 100                | 80        | 70              | 18             | 17   | 50         | 25  |
| ABS16140 |       | 140  | M10         | 60               | 100                | 80        | 70              | 18             | 17   | 50         | 20  |

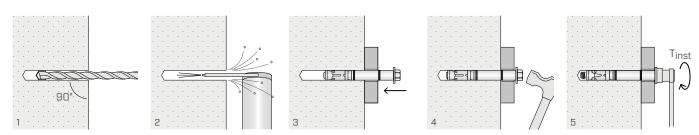


 $d_0$ anchor diameter = hole diameter in the concrete support

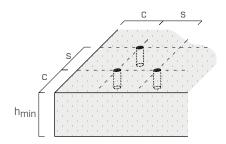
screw diameter anchor length

d

 $\mathsf{L}_\mathsf{t}$ 


maximum fastening thickness  $\textbf{t}_{\text{fix}}$  $h_1$ minimum hole depth

nominal anchoring depth  $h_{nom} \\$ h<sub>ef</sub> effective anchor depth


 $d_{f}$ maximum hole diameter in the element to be fastened

SW wrench size tightening torque Tinst

## ASSEMBLY



## INSTALLATION



|                                       |                                   |       |        | ABS   |        |
|---------------------------------------|-----------------------------------|-------|--------|-------|--------|
| Spacing and minimum distances         |                                   |       | 10/M6  | 12/M8 | 16/M10 |
| Minimum spacing                       | S <sub>min</sub>                  | [mm]  | 55     | 110   | 80     |
| Millimum spacing                      | for c ≥                           | [mm]  | 110    | 145   | 120    |
| Minimum edge distance                 | $c_{\min}$                        | [mm]  | 70     | 100   | 90     |
| Millimum edge distance                | for s ≥                           | [mm]  | 110    | 160   | 175    |
| Minimum thickness of concrete support | h <sub>min</sub>                  | [mm]  | 110    | 120   | 140    |
| Spacing and critical distances        | 10/M6                             | 12/M8 | 16/M10 |       |        |
| Critical chaoing                      | s <sub>cr,N</sub> <sup>(1)</sup>  | [mm]  | 165    | 180   | 210    |
| Critical spacing                      | s <sub>cr,sp</sub> <sup>(2)</sup> | [mm]  | 220    | 320   | 240    |
| Critical adap distance                | c <sub>cr,N</sub> <sup>(1)</sup>  | [mm]  | 85     | 90    | 105    |
| Critical edge distance                | c <sub>cr,sp</sub> <sup>(2)</sup> | [mm]  | 110    | 160   | 120    |

For spacing and distances smaller than the critical ones, strength values have to be reduced depending on the installation parameters.

## STATIC VALUES

Valid for a single anchor in thickened C20/25 grade concrete with a thin reinforcing layer when spacing and edge-distance are not limiting parameters.

#### CHARACTERISTIC VALUES

|        |                   |                   | ACKED<br>RETE        |      | CRACKED<br>CONCRETE |                   |                         |        |  |
|--------|-------------------|-------------------|----------------------|------|---------------------|-------------------|-------------------------|--------|--|
|        | tensi             | on <sup>(3)</sup> | shear <sup>(4)</sup> |      | tensi               | on <sup>(3)</sup> | shear                   |        |  |
|        | N <sub>Rk,p</sub> | YMp               | $V_{Rk,s}$           | YMs  | N <sub>Rk,p</sub>   | Υмр               | V <sub>Rk,s/Rk,cp</sub> | YMs,Mc |  |
|        | [kN]              |                   | [kN]                 |      | [kN]                |                   | [kN]                    |        |  |
| 10/M6  | 16,0              | 1,5               | 16,0                 | 1,45 | 5                   | 1,5               | 15,6 <sup>(5)</sup>     | 1,5    |  |
| 12/M8  | 16,0              | 1,5               | 25,0                 | 1,45 | 6                   | 1,5               | 25,0 <sup>(4)</sup>     | 1,45   |  |
| 16/M10 | 20,0              | 1,5               | 43,0                 | 1,45 | 16                  | 1,5               | 42,2 <sup>(5)</sup>     | 1,5    |  |

| incremental factor for N <sub>Rk,p</sub> <sup>(6)</sup> |        |      |  |  |  |  |
|---------------------------------------------------------|--------|------|--|--|--|--|
| $\Psi_{c}$                                              | C30/37 | 1,22 |  |  |  |  |
|                                                         | C40/50 | 1,41 |  |  |  |  |
|                                                         | C50/60 | 1,55 |  |  |  |  |

#### NOTES:

- $^{\left(1\right)}\,$  Breakage characteristics for formation of concrete cone for tensile loads.
- (2) Splitting failure mode for tensile loads.
- (3) Pull-out failure mode.
- $^{(4)}$  Steel failure mode ( $V_{Rk,s}$ ).
- $^{(5)}$  Pry-out failure mode ( $V_{Rk,cp}$ ).
- (6) Tensile-strength increment factor (excluding steel failure).

#### **GENERAL PRINCIPLES:**

- Characteristic values according to ETA-11/0181.
- The design values are obtained from the characteristic values as follows:  $R_d = R_k/\gamma_{M.}$ 
  - Coefficients  $\gamma_{\mbox{\scriptsize M}}$  are listed in the table in accordance with the failure characteristics and product certificates.
- For the calculation of anchors with reduced spacing, or too close to the edge, please refer to ETA. Similarly, in case of fastening on concrete-supports with a better-grade, limited thickness or a thick reinforcing layer please see ETA.
- When designing anchors under seismic load please refer to the ETA referral document and information in the EOTA Technical Report 045.
- For the calculation of anchors subjected to fire refer to the ETA and the Technical Report 020.