

dĸ

L

L

b

b

 d_1

 d_{K}

KGL EVO Ø5

SCREWS FOR TIMBER

MEMBRANES

thickness

d₁ KGL EVO Ø8

A maximum fastening

KGL EVO

SCREW WITH C4 EVO COATING AND PAN HEAD

- Multi-layer EVO coating based on epoxy and aluminium flakes. No rust after 1440 hours of salt spray exposure (ISO 9227)
- It can be used outdoors in coastal and industrial areas
- The 5.0 mm sizes are also ideal for timber-to-timber joints, the 8 mm sizes for metal profiles and post bases

CE

 $\mbox{MATERIAL:}$ carbon steel, with a 20 $\mu\mbox{m}$ coating, highly resistant to corrosion

d ₁ [mm]	d _K [mm]	CODE	L [mm]	b [mm]	A _T [mm]	A _P [mm]	pcs
5 TX 25	9,65	KGLEVO560	60	35	25	1,0÷10	200
8 TX 40	14,50	HBSPEVO840	40	32	8	1,0÷15	100
		KGLEVO860	60	52	8	1,0÷15	100
		KGLEVO880	80	55	25	1,0÷15	100
		KGLEVO8100	100	75	25	1,0÷15	100

GEOMETRY AND MECHANICAL CHARACTERISTICS

nominal diameter	d1	[mm]	5	8
head diameter	d _K	[mm]	9,65	14,50
thread diameter	d ₂	[mm]	3,40	5,40
shank diameter	ds	[mm]	3,65	5,80
head thickness	t ₁	[mm]	5,50	8,00
washer thickness	t _K	[mm]	1,00	3,40
underhead diameter	d _{UK}	[mm]	6,00	10,00
pre-drilling hole diameter ⁽¹⁾	d _V	[mm]	3,00	5,00
characteristic yield moment	M _{y,k}	[Nm]	5,40	20,10
characteristic withdrawal-resistance parameter ⁽²⁾	f _{ax,k}	[N/mm ²]	11,70	11,70
characteristic head-pull-through parameter ⁽²⁾	f _{head,k}	[N/mm ²]	10,50	10,50
characteristic tensile strength	f _{tens,k}	[kN]	7,90	20,10

⁽¹⁾ Pre-drilling valid for softwood.

2) Valid for softwood - maximum density 440 kg/m³. Associated density $\rho_{a} = 350 \text{ kg/m}^{3}$. For applications with different materials or with high density please see ETA-11/0030.

STRUCTURAL VALUES

				SHEAR					TENSION	
geometry				timber-to-timber	steel-wood thin plate ⁽¹⁾		ste thi	eel-wood ck plate ⁽²⁾	thread withdrawal ⁽³⁾	head pull-through ⁽⁴⁾
]]							
d1	L	b	А	R _{V,k}		R _{V,k}	R _{V,k}		R _{ax,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]		[kN]		[kN]	[kN]	[kN]
5	60	35	25	1,43	S _{PLATE} = 2,5 mm	1,82	S _{PLATE} = 5,0 mm	2,33	2,37	1,13
8	40	32	8	1,18	S _{PLATE} = 4,0 mm	2,13	S _{PLATE} = 8,0 mm	3,66	3,47	2,55
	60	52	8	1,18		3,31		5,12	5,63	2,55
	80	55	25	2,67		4,29		5,45	5,96	2,55
	100	75	25	2,67		4,83		5,99	8,12	2,55

NOTES

(1) The shear resistance characteristics are calculated considering the case of a thin plate ($S_{PLATE} \le 0.5 d_1$). (2) The shear resistance characteristics are calculated considering the case of a thick plate ($S_{PLATE} \ge d_1$). (3) The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

⁽⁴⁾ The axial resistance to head pull-through was calculated using wood elements.

GENERAL PRINCIPLES

- Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
- . Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

- The coefficients γ_M and k_{mod} should be taken according to the current regulations used for the calculation. For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030
- For the calculation process a timber characteristic density $\rho_k = 420 \text{ kg/m}^3$ has been considered.
- Values were calculated considering the threaded part as being completely inserted into the wood
- Dimensioning and verification of timber and steel elements must be carried out separately.
- The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.