I ALU TERRACE

ALUMINIUM PROFILE FOR PATIOS

TWO VERSIONS

ALUTERRA30 version for standard loads. ALUTERRA50 version, in black, for very high loads; can be used on both sides.

SUPPORT EVERY 1,10 m

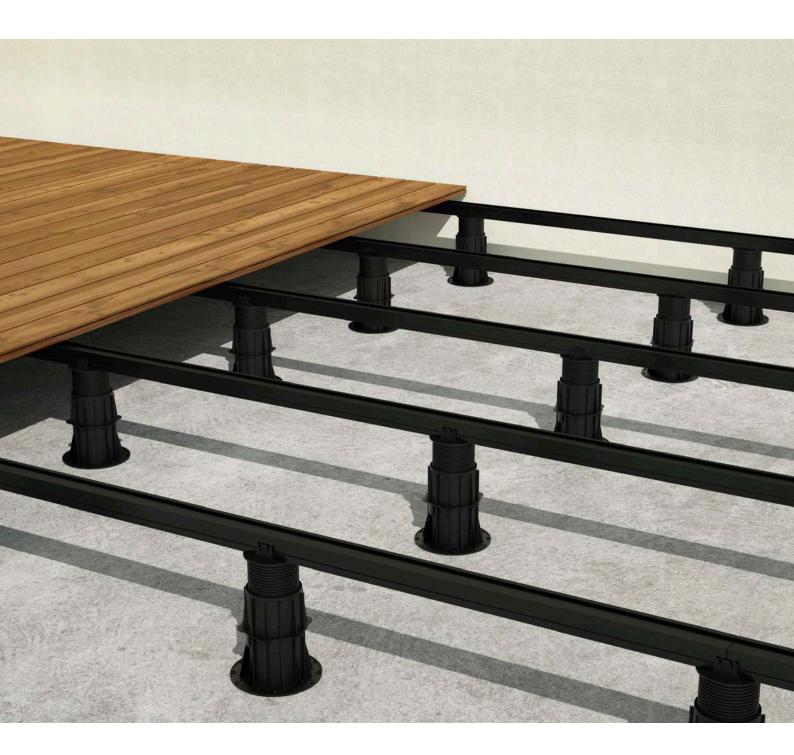
ALUTERRA50 is designed with a very high inertia so that the SUPPORTS can be positioned every 1,10 m (along the profile midline), even with high loads $(4,0 \text{ kN/m}^2)$.

DURABILITY

The substructure made of aluminium profiles guarantees excellent patio durability. The drainage channel allows water to run off and generates effective micro-ventilation.

CHARACTERISTICS

FOCUS	excellent durability and strength				
SECTIONS	53 x 30 mm and 60 x 50 mm				
THICKNESS	1,8 mm 2,2 mm				



MATERIAL

Versions in aluminium and in anodized aluminium (class 15) in graphite black.

FIELDS OF USE

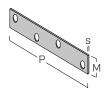
Patio substructure. Outdoor use. Suitable for service classes 1, 2 and 3.

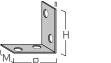
DISTANCE 1,10 m

With a spacing of 80 cm between the profiles (load: 4,0 kN/m²), the SUPPORT elements can be spaced 1,10 m apart and placed in the midline of the ALUTERRACE50 profile.

COMPLETE SYSTEM

Ideal for use in combination with SUPPORT, fixed laterally with KKA screws. System with excellent durability.





Aluminium substructure made with ALUTERRA30 and resting on GRANULO PAD

ACCESSORY CODES AND DIMENSIONS

WH0I1540

CODE	material	s	М	Р	Н	pcs
		[mm]	[mm]	[mm]	[mm]	
LBVI15100	A2 AISI304	1,75	15	100		200
WHOI1540	A2 AISI304	1,75	15	40	40	200



FLIP		FLAT

CODE	material	pcs
FLAT	black alluminum	200
FLIP	zinc-plated steel	200

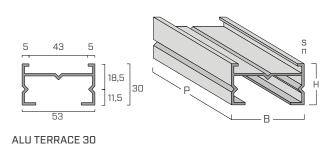
KKA AISI410

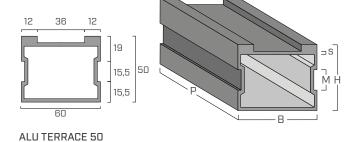
LBVI15100

$d_{_1}$	CODE	L	pcs
[mm]		[mm]	
4 TX 20	KKA420	20	200
5	KKA540	40	100
TX 25	KKA550	50	100

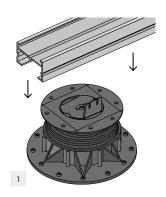
KKA COLOR

$d_{_1}$	CODE	L	pcs
[mm]		[mm]	
	KKAN420	20	200
4 TX 20	KKAN430	30	200
	KKAN440	40	200
5 TX 25	KKAN540	40	200

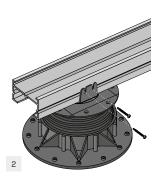

CODES AND DIMENSIONS


CODE	s	В	Р Н		pcs
	[mm]	[mm]	[mm]	[mm]	
ALUTERRA30	1,8	53	2200	30	1

CODE	s	В Р		Н	pcs
	[mm]	[mm]	[mm]	[mm]	
ALUTERRA50	2,5	60	2200	50	1


NDTES: upon request, P = 3000 mm version is available.

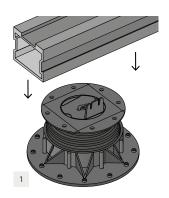
GEOMETRY



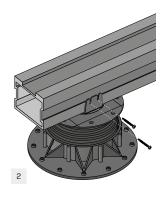
EXAMPLE OF FASTENING WITH SCREWS AND ALUTERRA30


Place the ALU TERRACE profile on the SUP-S support fit with head SUPSLHEAD1.

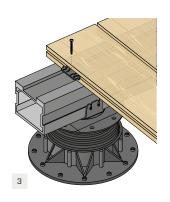
Fix the ALU TERRACE profile with 4,0 mm diameter screws KKAN.

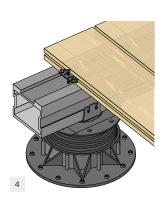


Fix the timber or WPC boards directly on the ALU TERRACE profile with 5,0 mm diameter KKA screws.

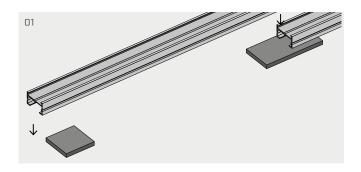


Repeat the operations for the remaining boards.

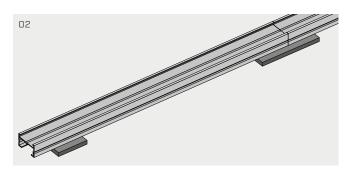

EXAMPLE OF FASTENING WITH CLIP AND ALUTERRASO


Place the ALU TERRACE profile on the SUP-S support fit with head SUPSLHEAD1.

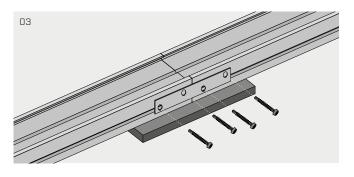
Fix the ALU TERRACE profile with 4,0 mm diameter screws KKAN.

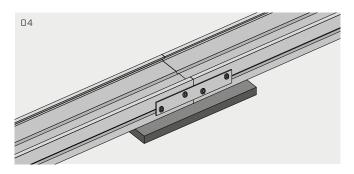


Fix the boards using FLAT concealed clips and 4,0 mm diameter KKAN screws.

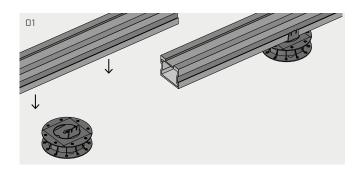


Repeat the operations for the remaining boards.

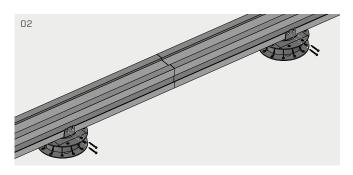

EXAMPLE PLACEMENT ON GRANULO PAD


Several ALUTERRA30 units can be connected lengthwise using stainless steel plates. Connection is optional.

Align two head-to-head profiles.

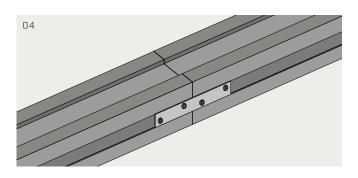


Place the LBVI15100 stainless steel plate on the aluminium profiles and fix with 4,0 x 20 mm diameter KKA screws.

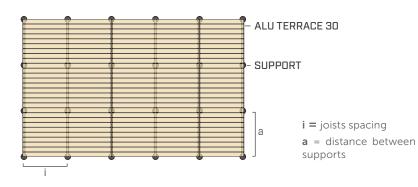


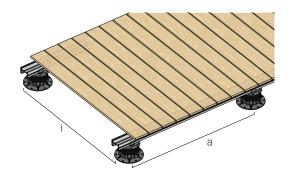
Do this on both sides to maximize stability.

■ EXAMPLE PLACEMENT ON SUPPORT


Several ALUTERRA50 units can be connected lengthwise using stainless steel plates. Connection is optional if the joint coincides with placement on the SUPPORT element.

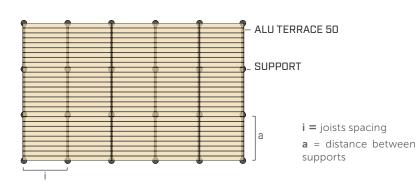
Connect the aluminium profiles with KKAN screws (diameter: 4,0 mm) and align two head-to-head profiles.


Place the LBVI15100 stainless steel plate on the lateral holes in the aluminium profiles and fix with 4,0 x 20 mm diameter KKA screws or KKAN 4,0 mm diameter.



Do this on both sides to maximize stability.

MAXIMUM DISTANCE BETWEEN SUPPORTS (a)


ALU TERRACE 30

OPERATING LOAD					i [m]				
[kN/m ²]	0,4	0,45	0,5	0,55	0,6	0,7	0,8	0,9	1,0
2,0	0,77	0,74	0,71	0,69	0,67	0,64	0,61	0,59	0,57
3,0	0,67	0,65	0,62	0,60	0,59	0,56	0,53	0,51	0,49
4,0	0,61	0,59	0,57	0,55	0,53	0,51	0,48	0,47	0,45
5,0	0,57	0,54	0,53	0,51	0,49	0,47	0,45	0,43	0,42

ALU TERRACE 50

OPERATING LOAD					i [m]				
[kN/m ²]	0,4	0,45	0,5	0,55	0,6	0,7	0,8	0,9	1,0
2,0	1,70	1,64	1,58	1,53	1,49	1,41	1,35	1,30	1,25
3,0	1,49	1,43	1,38	1,34	1,30	1,23	1,18	1,14	1,10
4,0	1,35	1,30	1,25	1,22	1,18	1,12	1,07	1,03	1,00
5,0	1,25	1,21	1,16	1,13	1,10	1,04	1,00	0,96	0,92

NOTES:

- Example with deformation L/300;
- Useful load according to EN 1991-1-1:

 - Category A areas = 2,0 \div 4,0 kN /m²; Areas susceptible to category C2 crowding = 3,0 \div 4,0 kN/m²; Areas susceptible to category C3 crowding = 3,0 \div 5,0 kN/m²;

The calculation was performed with a static diagram on a simple support span and considering a uniformly distributed load.