C

HOLD DOWN FOR HIGH TENSILE FORCES

- Hold-down with high tensile strength, for CLT or frame buildings
- Available in 4 sizes to be combined with 3 washers to meet all static performance requirements
- Large rod bore allows for optimum use of concrete fastening

Zn ELECTRO
PLATED

CODE	H $[\mathrm{mm}]$	$\boldsymbol{0}$ $[\mathrm{mm}]$	s $[\mathrm{mm}]$					n_{V} Ø5	pcs
HTZ340	1	340	17	3	20	10			
HTZ440	2	440	17	3	30	10			

WASHER FOR HTZ340 AND HTZ440 ANGLE BRACKET

CODE	\varnothing $[\mathrm{mm}]$	s $[\mathrm{mm}]$	HTZ340	HTZ440	pcs
HTZULS10	18	10	\bullet	\bullet	10

CODE		H [mm]	\varnothing [mm]	$\begin{gathered} \mathbf{s} \\ {[\mathrm{mm}]} \end{gathered}$	$\mathrm{n}_{\mathrm{V}} \varnothing 5$	pcs
WHT540	(3)	540	22	3	45	10
WHT620	(4)	620	26	3	55	10

WASHER FOR WHT540 AND WHT620 ANGLE BRACKET

CODE	$\boldsymbol{\sigma}$ $[\mathrm{mm}]$	s $[\mathrm{mm}]$	WHT540	WHT620	pcs
WHTW50L	22	10		-	1
WHTW70L	26	20	-	-	1

GEOMETRY

HTZ340

HTZ440

WHT540

WHT620

STRUCTURAL VALUES

TENSILE JOINT | TIMBER-TO-CONCRETE

	$\mathrm{R}_{1, \mathrm{k}}$ TIMBER			$\mathrm{R}_{1, \mathrm{k}}$ STEEL		$\mathrm{R}_{1, \mathrm{~d}}$ UNCRACKED CONCRETE		
CODE	holes fastening $\begin{aligned} & \varnothing \times \mathrm{L} \\ & {[\mathrm{~mm}]} \end{aligned}$	n_{v} [pcs]	$\mathrm{R}_{1, \mathrm{k} \text { timber }}$ [kN]	$[\mathrm{kN}]$	$V_{\text {steel }}$	V-NEX $\varnothing \times L$ [mm]	$\mathrm{R}_{1, \mathrm{~d} \text { concrete }}$ [kN]	$\mathbf{h}_{\text {min, concrete }}$ [mm]
HTZ340	Anker nails LBA $\varnothing 4 \times 60$ LBS screws $\varnothing 5 \times 50$	20	38,6	42,0	$\gamma_{\text {MO }}$	M16 x 160 - cl. 5.8	30,7	200
HTZ440 + HTZULS10		30	57,9	63,4	$\gamma_{M 2}$	M16 $\times 195-\mathrm{cl} .5 .8$	36,5	200
WHT540 + WHTW50L		45	86,9	63,4	$\gamma_{\text {M2 }}$	M20 x 245 - cl. 5.8	58,0	240
WHT620 + WHTW70L		55	106,2	85,2	$\gamma_{\text {M2 }}$	M $24 \times 330-\mathrm{cl} .5 .8$	97,5	320

GENERAL PRINCIPLES

- Characteristic values are consistent with EN 1995-1-1 and in accordance with ETA-11/0086. The design values of the anchors for concrete are calculated in accordance with the respective European Technical Assessments.
- The connection design strength value is obtained from the values on the table as follows:

$$
R_{d}=\min \left\{\begin{array}{l}
\frac{R_{k, \text { timber }} \cdot k_{\text {mod }}}{\gamma_{M}} \\
\frac{R_{k, \text { steel }}}{\gamma_{\text {steel }}} \\
R_{d, \text { concrete }}
\end{array}\right.
$$

- The calculation process used a timber characteristic density of $\rho_{k}=350 \mathrm{~kg} / \mathrm{m}^{3}$ and a $C 25 / 30$ concrete strength class with a thin reinforcing layer, where there is no edge-distance and minimum thickness indicated in the tables.
- Dimensioning and verification of timber and concrete elements must be carried out separately.
- For applications on CLT (Cross Laminated Timber) it is recommended to use nails/screws of adequate length to ensure that the fixing depth involves a sufficient timber thickness to prevent fragile failure for group effects.
- The strength values of the connection system are valid under the calculation hypotheses listed in the table.
- Chemical anchor V-NEX according to ETA-20/0363 with threaded rods (type INA) in minimum steel class 5.8

