TITAN PLATE T TIMBER

PLATES FOR SHEAR LOADS

TIMBER-TO-TIMBER

These plates are ideal for the flat connection of the timber platform beams to load-bearing timber panels.

SHEAR PLATES

Shear strengths calculated with both partial and total fastening for solid timber, glulam and CLT.

CALCULATED AND CERTIFIED

CE marking according to European standard EN 14545. Available in 2 versions. TTP300 version ideal for CLT.

CHARACTERISTICS

FOCUS	timber-to-timber shear joint
HEIGHT	200 300 mm
THICKNESS	3,0 mm
FASTENERS	LBA, LBS

MATERIAL

Bright zinc plated carbon steel, two dimensional perforated plate.

FIELDS OF USE

Timber-to-timber shear joints for panels and timber beams

- CLT, LVL
- solid timber and glulam
- framed structures (platform frame)

CODES AND DIMENSIONS

TITAN PLATE TTP

CODE	В	Н	n _{v1} Ø5	n _{v2} Ø5	s	シリ	pcs
	[mm]	[mm]	[pcs]	[pcs]	[mm]		
TTP200	200	105	7	7	3	٠	10
TTP300	300	200	42	14	3	•	5

₽F2,3

EXTERNAL LOADS

F3

MATERIAL AND DURABILITY

TTP200: bright zinc plated carbon steel. TTP300: bright zinc plated carbon steel.

To be used in service classes 1 and 2 (EN 1995-1-1).

FIELD OF USE

• Timber-to-timber joints

ADDITIONAL PRODUCTS - FASTENING

type	description		d	support	page
			[mm]		
LBA	Anker nail	<u>[]</u>	4	2)III	548
LBS	screw for plates	()+	5	2000	552

F2

4

GEOMETRY

CLT

The 300 mm version is specially designed to maximise shear strength in CLT structures. Ideal for the connection of the floor platform beams to the load-bearing walls.

TIMBER FRAME

The 200 mm version also allows fastening the platform beams in the foundation (height higher than 8 cm) to the upper supporting panel, both in CLT and TIMBER FRAME structures.

INSTALLATION

TTP plates can be used on both CLT and solid timber/glulam elements and must be positioned with the assembly notches at the timber-to-timber interface.

In the case of fastening on beam/platform beam, the minimum H_B dimension of the elements is shown in the table with reference to the installation diagrams.

		H _{B MIN} [mm]			
		nails	screws		
		LBA Ø4	LBS Ø5		
TTP200	total fastening	75	-		
TTP300	total fastening	100	105		
	partial fastening	110	130		

The H_B height is determined taking into account the minimum distances for solid timber or glulam consistent with EN 1995-1-1 according to ETA considering a timber density $\rho_k \leq 420 \text{ kg/m}^3$

TTP200 | TOTAL FASTENING

TTP300 | TOTAL FASTENING

TTP300 | PARTIAL FASTENING

STATIC VALUES | SHEAR JOINT | TIMBER-TO-TIMBER

TTP200

	TIMBER				
configuration		R _{2/3,k timber} (1)			
comguration	type	ØxL	n _{v1}	n _{v2}	
		[mm]	[pcs]	[pcs]	[kN]
total fastening	LBA nails	Ø4,0 x 60	7	7	7,8

ТТРЗОО

TOTAL

	TIMBER					
configuration		R _{2/3,k timber} ⁽¹⁾				
coniguration	type	ØxL	n _{v1}	n _{v2}		
		[mm]	[pcs]	[pcs]	[kN]	
- total factoring	LBA nails	Ø4,0 x 60	42	14	28,0	
• total lastening	LBS screws	Ø5,0 x 60	42	14	27,7	
- nartial factoring	LBA nails	Ø4,0 x 60	14	14	15,3	
	LBS screws	Ø5,0 x 60	14	14	15,1	

NOTES:

 $^{\rm (1)}$ Strength values are valid for all full/partial configurations indicated in the INSTALLATION section.

GENERAL PRINCIPLES:

 Characteristic values according to EN 1995-1-1. The connection design strength values are obtained from the values on the table as follows:

$$R_d = \frac{R_{k \text{ timber}} \cdot k_{mod}}{\gamma_M}$$

The coefficients $k_{mod},\,y_{\rm M}$ should be taken according to the current regulations used for the calculation.

- + For the calculation process a timber density ρ_k = 350 kg/m 3 has been considered.
- Dimensioning and verification of the timber elements must be carried out separately.