c ϵ
EN 14545

PERFORATED TAPE

TWO THICKNESSES

Simple and effective system to achieve floor bracing. It is available in thicknesses of 1,5 and $3,0 \mathrm{~mm}$.

CLIPSET

Simply and effortlessly secures the ends of the tape in many applications of floor and roof bracing.

SPECIAL STEEL

Made with S350 GD high strength steel. The $1,5 \mathrm{~mm}$ thick version offers extreme resistance to tensile forces with minimal thickness.

CHARACTERISTICS

FOCUS	tension fastening
WIDTH	from 40 to 80 mm
THICKNESS	$1,5 \mid 3,0 \mathrm{~mm}$
FASTENERS	LBA, LBS

MATERIAL

Carbon steel with bright zinc plated perforated tape

FIELD OF USE

Timber-to-timber joints

- solid timber and glulam
- CLT, LVL
- timber based panels

BRACINGS

This system is ideal for creating safe, quick and effective bracing. The use of high quality steel ensures that the tapes reduced thickness does not compromise the tensile strength.

- CODESAND DIMENSIDNS

LBB 1,5 mm						
CODE	$\begin{gathered} \text { B } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ {[\mathrm{~m}]} \end{gathered}$	n $\varnothing 5$ pcs	$\begin{gathered} \mathbf{s} \\ {[\mathrm{mm}]} \end{gathered}$		pcs
LBB40	40	50	75 / m	1,5	\bullet	1
LBB60	60	50	125 / m	1,5	-	1
LBB80	80	25	175 / m	1,5	\bullet	1

LBB 3,0 mm

CODE	\mathbf{B}	\mathbf{H}	$\mathrm{n} \varnothing 5$	s		
$[\mathrm{~mm}]$	$[\mathrm{m}]$	pcs	[mm]	pcs		
LBB4030	40	50	$75 / \mathrm{m}$	3	\bullet	1

CLIPSET

CODE	LBB type	LBB width	pcs
CLIPSET60	perforated tape LBB60	$\mathrm{B}=60 \mathrm{~mm}$	1

| SET COMPRISED OF: | \mathbf{B} | \mathbf{H} | \mathbf{L} | $\mathbf{n} \varnothing 5$ | $\mathbf{n} \varnothing 13$ | \mathbf{s} | pcs |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $[\mathrm{mm}]$ | $[\mathrm{mm}]$ | $[\mathrm{mm}]$ | pcs | pcs | $[\mathrm{mm}]$ | |
| $\mathbf{1}$ Terminal plate | 254 | 181 | 43 | $9+14$ | 2 | 3 | 4 |
| $\mathbf{2}$ Clip-Fix tensioner | 76 | 20 | $334-404$ | - | - | 2 | 2 |
| $\mathbf{3}$ Clip-Fix Terminal | 76 | 20 | 150 | - | - | 2 | 2 |

MATERIAL AND DURABILITY

EXTERNAL LOADS
LBB 1,5 mm: carbon steel S350GD+Z275.
LBB 3,0 mm: carbon steel S250GD+Z275.
CLIPSE : carbon steel DX51D+Z275.
To be used in service classes 1 and 2 (EN 1995-1-1).

FIELD OF USE

- Timber-to-timber joints

- ADDITIDNAL PRODUCTS - FASTENING

type	description		d	support	page
		[mm]			
LBA	Anker nail		4	P)1110	548
LBS	screw for plates	(-1)	5	ए)1110	552

GEDMETRY

LBB4D / LBB4030

LBB60

LBB80

$$
\begin{gathered}
80 \\
20 \\
20\left[\begin{array}{cccc}
{\left[\begin{array}{cccc}
0-------- \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
\begin{array}{c}
10 \\
1 \\
1 \\
10
\end{array} 1 & 1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

I INSTALLATION

LBB ASSEMBLING

TIMBER - MINIMUM DISTANCES

Load-to-grain angle $a=0^{\circ}$			Anker nail LBA Ø4	screw LBA Ø4
Lateral connector - unloaded edge	$\mathrm{a}_{4, \mathrm{c}} \quad[\mathrm{mm}]$	$\geq 5 \mathrm{~d}$	≥ 20	≥ 25
Connector - loaded end	$\mathrm{a}_{3, \mathrm{t}} \quad[\mathrm{mm}]$	$\geq 15 \mathrm{~d}$	≥ 60	≥ 75

CLIPSET ASSEMBLING

CLIP-FIX TENSIONER

Open the Clip-Fix

CLIP-FIX TERMINAL

Open the Clip-Fix

Insert the perforated tape

Insert the perforated tape

Close the Clip-Fix

Close the Clip-Fix

Fix it to the plate

Fix it to the plate

ADJUSTING THE SYSTEM

Use the tensioner to regulate the length of the bracing system

STATIC VALUES |TIMBER-TO-TIMBER TENSILE JOINT

STRENGTH OF THE SYSTEM

The tensile strength of the $R_{1, d}$ system is the minimum between the $R_{a x, d}$ plate side tensile strength and the shear resistance of the connectors used for fastening $n_{t o t} \cdot R_{v, d}$.
If the connectors are placed in several consecutive rows and the load direction is parallel to the grain, the following sizing criteria must be applied.
$R_{1, d}=\min \left\{\begin{array}{l}R_{a x, d} \\ \Sigma n_{i} \cdot m_{i}^{k} \cdot R_{v, d}\end{array} \quad k= \begin{cases}0,85 & \text { LBA } \varnothing=4 \\ 0,75 & \text { LBA } \quad \varnothing=5\end{cases}\right.$

Where m_{i} is the number of rows of connectors parallel to the grain and n_{i} is the number of connectors arranged in the same row.

TAPE -TENSILE STRENGTH

				CHARACTERISTIC VALUES
type	B	s	net area holes	$\mathrm{R}_{\mathrm{ax}, \mathrm{k}}$
	[mm]	[mm]	pcs	[kN]
LBB 1,5 mm	40	1,5	2	17,0
	60	1,5	3	25,5
	80	1,5	4	34,0
LBB 3,0 mm	40	3,0	2	26,7

CONNECTORS SHEAR RESISTANCE

For the strength $R_{v, k}$ of the LBA Anker nails and of the LBS screws, refer to SCREWS AND NAILS FOR PLATES chapter.

NOTES FOR SEISMIC DESIGN

Particular attention has to be paid to the "capacity design" applied at different scale levels: the global structure and the connection system. Experimentally the ultimate strength of the LBA nail (and of the LBS screw) is notably larger than the characteristic strength evaluated according to EN 1995.
E.g. LBA nail $\varnothing 4 \times 60 \mathrm{~mm}: \mathrm{R}_{\mathrm{v}, \mathrm{k}}=2,8-3,6 \mathrm{kN}$ by experimental tests (variable according to the type of timber and plate thickness).

Experimental data derive from tests carried out within the Seismic-Rev research project and are reported in the scientific report: "Connection systems for timber buildings: experimental campaign to characterize stiffness, strength and ductility" (DICAM - Department of Civil, Environmental and Mechanical Engineering - UniTN).

GENERAL PRINCIPLES:

- Characteristic values according to EN 1993 and EN 1995-1-1 standards.
- The plate design strength values can be obtained as follows:

$$
R_{a x, d}=\frac{R_{a x, k}}{Y_{s t e e l}}
$$

sidered.

- Dimensioning and verification of the timber elements must be carried out separately.
- It is recommended to place the connectors symmetrically with respect to the load direction.
- The connectors design strength values can be obtained as follows:

$$
R_{v, d}=\frac{R_{v, k} \cdot k_{m o d}}{\gamma_{M}}
$$

Coefficients $\gamma_{M 2}, \gamma_{M}$ and $k_{\text {mod }}$ must be taken according to the current standard adopted for the design.

- For the calculation process a timber density $\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3}$ has been con-
- CALCULATION EXAMPLE | TIMBER-TO-TIMBER TENSIL JDINT WITH LBV AND LBB

PROJECT DATA

Strength	F $_{1, \mathrm{~d}}$	$12,0 \mathrm{kN}$
Service class		2
Load duration		short
Solid timber CL24	B1	80 mm
Element 1	H2	140 mm
Element 2	B3	80 mm
Element 3		

USABLE PRODUCTS
perforated tape LBB40 perforated plate LBV401200 ${ }^{(2)}$
$B=40 \mathrm{~mm}$
$\mathrm{s}=1,5 \mathrm{~mm}$
$B=40 \mathrm{~mm}$
$\mathrm{s}=2 \mathrm{~mm}$
$\mathrm{H}=600 \mathrm{~mm}$

Anker nail LBA440	(1)
$d_{1}=4,0 \mathrm{~mm}$	Anker nail LBA440 $^{(1)}$
$L=40 \mathrm{~mm}$	$d_{1}=4,0 \mathrm{~mm}$

$\mathrm{L}=40 \mathrm{~mm}$
$\mathrm{L}=40 \mathrm{~mm}$

EVALUATION OF THE STRENGTH OF THE SYSTEM

PERFORATED TAPE LBB4015

PERFORATED PLATE LBV401200

TAPE/PLATE - TENSILE STRENGTH

perforated tape LBB40	perforated plate LBV401200				
$\mathrm{R}_{\mathrm{ax}, \mathrm{k}}$	$=17,0$	kN	$\mathrm{R}_{\mathrm{ax}, \mathrm{k}}$	$=17,8$	kN
$\mathrm{Y}_{\mathrm{M} 2}$	$=1,25$		$\mathrm{Y}_{\mathrm{M} 2}$	$\mathrm{R}_{\mathrm{ax}, \mathrm{d}}$	$=1,25$
$\mathrm{R}_{\mathrm{ax}, \mathrm{d}}$	$=13,60$	kN			

CONNECTOR - SHEAR STRENGTH

perforated tape LBB40				perforated plate LBV401200 ${ }^{(2)}$			
$\mathrm{R}_{\mathrm{v}, \mathrm{k}}$	$=$	1,89	kN	$\mathrm{R}_{\mathrm{v}, \mathrm{k}}$	$=$	1,89	kN
$\mathrm{n}_{\text {tot }}$	$=$	13	pcs	$\mathrm{n}_{\text {tot }}$	$=$	13	pcs
n_{1}	$=$	5	pcs	n_{1}	$=$	4	pcs
m_{1}	$=$	2	lines	m_{1}	$=$	2	lines
n_{2}	$=$	3	pcs	n_{2}	$=$	5	pcs
m_{2}	$=$	1	lines	m_{2}	$=$	1	lines
$\mathrm{k}_{\text {LBA }}$	$=$	0,85		$\mathrm{k}_{\text {LBA }}$	$=$	0,85	
$\mathrm{k}_{\text {mod }}$		0,90		$\mathrm{k}_{\text {mod }}$	$=$	0,90	
Y_{M}		1,30		Yм	$=$	1,30	
$\mathrm{R}_{\mathrm{v}, \mathrm{d}}$		1,31	kN	$\mathrm{R}_{\mathrm{v}, \mathrm{d}}$	$=$	1,31	kN
$\sum m_{i} \cdot n_{i}^{k} \cdot R_{v, d}$	=	13,61	kN	$\sum m_{i} \cdot n_{i}{ }^{k} \cdot R_{v, d}$	$=$	13,64	kN

STRENGTH OF THE SYSTEM

NOTES:

${ }^{(1)}$ In the calculation example LBA Anker nails are used. The fastening can also be made with LBS screws (page 552).
${ }^{(2)}$ Plate LBV401200 is considered cut to length 600 mm .

GENERAL PRINCIPLES:

- To optimize the connection system, it is recommended to use a number of connectors which can provide a shear capacity that does not exceed the tensile strength of the tape/plate.
- It is recommended to place the connectors symmetrically with respect to the load direction.

