MINI

L

L

b

L

d₁ MINI ANTI. CORR.

A maximum fastening thickness

b

 d_1

MINI A4 | AISI316

dĸ

DOUBLE THREAD SCREW WITH CONCEALED HEAD

- Carbon steel version with coloured anti-rust coating for outdoor use in service class 3
- The inverse under-head thread guarantees excellent grip. Small inverted conical head for excellent concealed effect
- The three-lobed body makes it possible to cut the timber grain during screwing. Exceptional timber pull-through
- Application on timber boards with density of < 780 kg/m³ (without pre-drilling hole) and
 880 kg/m³ (with pre-drilling hole). It can be applied to WPC boards (with pre-drilling hole).
- Ideal for fastening standard Rothoblaas clips (FLAT, FLIP, TVM) in outdoor environments.
- **MATERIAL**: austenitic stainless steel A4 | AISI316 (MINI A4) and carbon steel with coloured organic anti-corrosion coating.

ORGANIC COATING	A4 AISI 316	
	A131 310	

MINI A4 STAINLESS STEEL

d ₁ [mm]	d _κ [mm]	CODE	L [mm]	b [mm]	A [mm]	pcs	
5 TX 20			MNA550	53	35	18	200
	6,75	MNA560	60	40	22	200	
		MNA570	70	50	27	100	

MINI STEEL WITH ANTI-CORROSION COATING

d1	d _K	CODE	L	b	A	colour	pcs
[mm]	[mm]		[mm]	[mm]	[mm]		
		MNB550	53	35	18	•	200
		MNB560	60	40	22	٠	200
		MNB570	70	50	27	•	100
		KKTN540 ^(*)	40	36	16	•	200
5 TX 20	6,75	KKTN550	53	35	18	•	200
		KKTN560	60	40	22	•	200
		ККТV550	53	35	18	٠	200
		ККТV560	60	40	22	•	200
		ККТV570	70	50	27		100

^(*) Full threaded screw.

RANGE OF COLOURS AVAILABLE: mouse grey brown

black

green

 d_{K}

SCREWS AND FASTENERS FOR TERRACES

sand

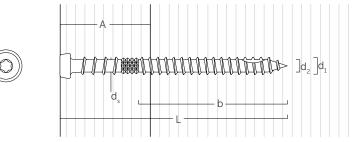
A4

POST BASES

SCREWS AND FASTENERS FOR TERRACES

SCREWS FOR TIMBER

SCREWS FOR METAL


CHEMICAL AND METAL ANCHORS

SEALANTS, TAPES AND PROFILES

ROOF ELEMENTS

GEOMETRY AND MECHANICAL CHARACTERISTICS

d,

			MINI A4	MINI WITH ANTI-CORROSION COATING
nominal diameter	d1	[mm]	5,1	5,1
head diameter	d _K	[mm]	6,75	6,75
thread diameter	d ₂	[mm]	3,40	3,40
shank diameter	ds	[mm]	4,05	4,05
notched tip			single	double
pre-drilling hole diameter ⁽¹⁾	d _v	[mm]	3,0 - 4,0	3,0 - 4,0
characteristic yield moment	M _{y,k}	[Nm]	5,84	8,42
characteristic withdrawal-resistance parameter	f _{ax,k}	[N/mm ²]	13,7	14,7
associated density	ρ _a	[kg/m ³]	350	400
characteristic head-pull-through parameter	$f_{head,k}$	[N/mm ²]	23,8	68,8
associated density	ρ _a	[kg/m ³]	350	730
characteristic tensile strength	f _{tens,k}	[kN]	7,8	9,6

⁽¹⁾For high density materials, pre-bored holes are recommended based on the wood species.

STRUCTURAL VALUES | MINI A4

				SHE	AR	TEN	SION
geometry				timber-to-timber without pre-drilling hole	timber-to-timber with pre-drilling hole	thread withdrawal ⁽¹⁾	head pull-through ⁽²⁾
d1	L	b	А	R _{V,k}	R _{V,k}	R _{ax,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
	53	35	18	1,16	1,40	2,77	1,25
5	60	40	22	1,24	1,53	3,17	1,25
	70	50	27	1,35	1,70	3,96	1,25

NOTES

⁽¹⁾ The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b. ⁽²⁾ The axial resistance to head pull-through was calculated using timber elements also considering the underhead thread.

STRUCTURAL VALUES | MINI WITH ANTI-CORROSION COATING

				SHI	EAR	TEN	SION
geometry				timber-to-timber without pre-drilling hole	timber-to-timber with pre-drilling hole	thread withdrawal ⁽¹⁾	head pull-through ⁽²⁾
d1	L	b	А	R _{V,k}	R _{V,k}	R _{ax,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
	53	35	18	1,13	1,47	2,67	1,05
5	60	40	22	1,20	1,57	3,06	1,05
	70	50	27	1,31	1,73	3,82	1,05

STRUCTURAL VALUES | KKTN540

			SHE	EAR	TENSION
geometry			interm steel-to-tin		thread withdrawal ⁽¹⁾
		☐ S _{PLATE}			
d1	L	b	R _{V,k}		R _{ax,k}
[mm]	[mm]	[mm]	[kN]		[kN]
5	40	36	$S_{PLATE} = 3,0 \text{ mm}$	1,49	2,75

ROOF ELEMENTS

MEMBRANES

- (1) The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
- ⁽²⁾ The axial resistance to head pull-through was calculated using timber elements also considering the underhead thread. A characteristic head-pull-through parameter equal to 20 N/mm² with associated density $\rho_a = 350 \text{ kg/m}^3$ is considered in the calculation phase. (3) The shear resistance characteristics are calculated considering the case of an intermediate plate (0,5 d¹ s PLATE s d).

GENERAL PRINCIPLES

- Characteristic values according to EN 1995:2014.
- Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

HOLZ TECHNIC

The coefficients γ_M and k_{mod} should be taken according to the current regulations used for the calculation. Mechanical strength values and screw geometry according to CE marking according to EN 14592. For the calculation process a timber characteristic density $\rho_k = 420$ kg/m³ has been considered. Values were calculated considering the threaded part as being completely inserted into the wood.

- •
- .
- Dimensioning and verification of timber elements and steel plates must be carried out separately.
 The screws with double thread are mainly used for timber to timber joints.
 The KKTN540 total thread screw is mainly used for steel plates (e.g. FLAT patio system).