REINFORCED TENSILE ANGLE BRACKET

- The most classic of the tensile angle brackets: ideal for tensile fastening of CLT or frame walls
- Hole size and disposition designed for an optimal application in any situation
- Reinforced base, to be fastened by screw (on timber) or anchor (on concrete)

Number of holes:

$n_{H} \varnothing 5$	$n_{H} \varnothing 11$	$n_{H} \varnothing 14$	$n_{V} \varnothing 5$	$n_{V} \varnothing 13,5$
2	1	1	8	-

Number of holes:

$\mathrm{n}_{\mathrm{H}} \varnothing 5$	$\mathrm{n}_{\mathrm{H}} \varnothing 11$	$\mathrm{n}_{\mathrm{H}} \varnothing 14$	$\mathrm{n}_{\mathrm{V}} \varnothing 5$	$\mathrm{n}_{\mathrm{V}} \varnothing 13,5$
2	1	1	13	1

	ADDITIONAL PRODUCTS－FASTENING				
	type	description		d	support
$\begin{aligned} & \text { u } \\ & 山 己 心 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	［mm］				
	LBA－HT	Anker nail	｜\％	4	リ川11
	SBL	round－head screw and flat underhead	（－u｜umumu｜	5	『川11
	VGS	full thread screw		11－13	ข川11
	SHT	turned washer		11	ए川川
	HUS	turned washer		13	2）111
	HBSPLATE	pan head screw	［7］	10－12	ग111
	AB1	mechanical anchor		12	
	SKR－CE	screw anchor	\square Mutum	M12	P6，
	V－NEX	chemical anchor	0	M12	限安気
	HYB－FIX	chemical anchor	0	M12	

MATERIAL AND DURABILITY

WKR9530：S250＋Z275 steel．
WKR13535｜WKR21535｜WKR28535｜WKR53035：
S235 bright zinc plated carbon steel．
To be used in service classes 1 and 2 （EN 1995－1－1）

FIELD OF USE
－Timber－to－timber joints
－Timber to concrete joints
－Timber－to－steel joints

EXTERNAL LOADS

WKR28535

CODE	configuration	holes fastening $\varnothing 5$ n_{v} pcs	c ［mm］	$\begin{gathered} \mathrm{m} \\ {[\mathrm{~mm}]} \end{gathered}$	support	
					我	ए,
WKR9530	pattern 1	6	60	25	－	－
	pattern 2	6	60		－	－
WKR13535	pattern 1	11	60	25	－	－
	pattern 2	11	60		－	－
WKR28535	pattern 1	16	160	25	－	－
	pattern 2	22	60		－	－
	pattern 3	22	60		－	－
	pattern 4	8	160		－	－

INSTALLATION

MAXIMUM HEIGHT OF THE INTERMEDIATE H_{B} LAYER

CODE	configuration	$\mathrm{H}_{\mathrm{B} \text { max }}[\mathrm{mm}]$			
		CLT		C/GL	
		nails	screws	nails	screws
		LBA-HT Ø4	SBL $\varnothing 5$	LBA-HT Ø4	SBL Ø5
WKR9530	pattern 1-2	20	30	-	-
WKR13535	pattern 1-2	20	30	-	-
WKR28535	pattern 1-4	120	130	100	85
	pattern 2-3	20	30	-	-

The height of the H^{B} intermediate layer (levelling mortar, sill or timber platform beam) is determined by taking into account the regulatory requirements for fastenings on timber, shown in the minimum distance table.

TIMBER minimum distances			nails LBA-HT Ø4	screws SBL Ø5
C/GL	$\mathrm{a}_{4, \mathrm{c}}$	[mm]	≥ 20	≥ 25
	$\mathrm{a}_{3, \mathrm{t}}$	[mm]	≥ 60	≥ 75
CLT	$\mathrm{a}_{4, \mathrm{c}}$	[mm]	≥ 12	$\geq 12,5$
	$a_{3, t}$	[mm]	≥ 40	≥ 30

- C/GL: minimum distances for solid timber or glulam consistent with EN 1995-1-1 according to ETA considering a timber density $\rho_{\mathrm{k}} \leq 420 \mathrm{~kg} / \mathrm{m}^{3}$.
- CLT: minimum distances for Cross Laminated Timber according to ÖNORM EN 1995-1-1 (Annex K) for nails and ETA 11/0030 for screws.

INSTALLATION WITH GAP

In the presence of F_{1} tensile forces, installation of the angle bracket raised above the bearing surface is possible. This allows, for example, to install the angle bracket even in the presence of an intermediate H_{B} layer (bedding mortar, root beam or concrete curb) greater than $H_{B \text { max }}$. It is recommended to install a lock nut below the horizontal flange, to prevent that excessive tightening of the nut may stress the connection.

TIMBER STRENGTH

CODE	configuration	holes fastening $\varnothing 5$			$\mathrm{R}_{1, \mathrm{k} \text { timber }}{ }^{(1)}$	$\mathrm{K}_{1, \text { ser }}$ [$\mathrm{kN} / \mathrm{mm}$]
		type	$\begin{aligned} & \varnothing \times \mathrm{L} \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p c s]} \end{gathered}$	[kN]	
WKR9530	pattern 1	LBA nails	$\varnothing 4,0 \times 60$	6	15,0	$\mathrm{R}_{1, \mathrm{k} \text { timber }} / 4$
		SBL screws	$\varnothing 5,0 \times 50$		13,3	
WKR13535	pattern 1	LBA nails	$\varnothing 4,0 \times 60$	11	28,3	
		SBL screws	$\varnothing 5,0 \times 50$		24,6	
WKR28535	pattern 1	LBA nails	$\varnothing 4,0 \times 60$	16	37,3	
		SBL screws	$\varnothing 5,0 \times 50$		36,0	
	pattern 2	LBA nails	$\varnothing 4,0 \times 60$	22	57.6	
		SBL screws	$\varnothing 5,0 \times 50$		49,3	
	pattern 4	LBA nails	$\varnothing 4,0 \times 60$	8	21,3	
		SBL screws	$\varnothing 5,0 \times 50$		18,0	

NOTES:

${ }^{(1)}$ Installation with nails and screws of shorter length than proposed in the table is possible. In this case, the bearing capacity values $R_{1, k}$ timber must be multiplied by the following reductive factor k_{F} :

- for nails
$k_{F}=\min \left\{\frac{F_{v, \text { short,Rk }}}{2,66 \mathrm{kN}} ; \frac{F_{a x, \text { short,Rk }}}{1,28 \mathrm{kN}}\right\}$
- for screws
$k_{F}=\min \left\{\frac{F_{v, \text { short }, R k}}{2,25 \mathrm{kN}} ; \frac{F_{a x, \text { short,Rk }}}{2,63 \mathrm{kN}}\right\}$
$F_{v, \text { short }, R k}=$ characteristic shear strength of the nail or screw
$F_{\text {ax,short } R k}=$ characteristic withdrawal strength of the nail or screw
- For installation in the presence of an H_{B} intermediate layer (levelling mortar, sill or platform) with nails on CLT and $a_{3, t}<60 \mathrm{~mm}$, the $\mathrm{R}_{1, k}$ timber values in the table must be multiplied by a 0,93 coefficient.
- If there are design requirements such as the presence of an intermediate H_{B} layer (levelling mortar, sill or platform) greater than H_{B} max, the installation of the angle bracket raised above the bearing surface (gap installation) is allowed.

	STRENGTH ON STEEL SIDE				
	CODE	configuration	$\mathrm{R}_{1, \mathrm{k}, \text { bolt, head }}{ }^{(*)}$		
			no gap	gap	$\gamma_{\text {steel }}$
$\begin{aligned} & \tilde{\sim} \\ & \tilde{\sim} \\ & \infty \\ & \hbar \\ & 0 \\ & 0 \end{aligned}$			[kN]	[kN]	
	WKR9530	pattern 1	26	8,3	$\gamma_{M 2}$
	WKR13535	pattern 1	26	19	
	WKR28535	pattern 1-4	26	-	
		pattern 2		19	

${ }^{(*)}$ The values in the table refer to a punching shear failure of the connector in the horizontal flange.

CONCRETE STRENGTH

CODE	configuration on concrete	holes fastening Ø14		$\mathrm{R}_{1, \mathrm{~d} \text { concrete }}$					
				no gap				gap	
		type	$\varnothing \times \mathrm{L}$	pattern 1	pattern 2	pattern 3	pattern 4	pattern 1	pattern 2
			[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
WKR9530 WKR13535	- uncracked	V-NEX $5.8{ }^{(1)}$	M12 $\times 195$	26,6	-	-	-	28,0	-
		SKR-CE	12×90	10,5	-	-	-	-	-
		$A B 1{ }^{(2)}$	M12 $\times 100$	17,4	-	-	-	-	-
	- cracked	V-NEX 5.8	M12 $\times 195$	19,5	-	-	-	20,5	-
		HYB-FIX 5.8 ${ }^{(3)}$	M12 $\times 195$	26,7	-	-	-	28,0	-
		AB1	M12 $\times 100$	10,2	-	-	-	-	-
	- seismic	HYB-FIX 8.8	M12 $\times 195$	14,6	-	-	-	15,4	-
			M12 $\times 245$	18,1	-	-	-	19,0	-
WKR28535	- uncracked	V-NEX 5.8	M12 $\times 195$	19,3	25,4	-	19,3	-	28,0
		SKR-CE	12×90	7,6	10,1	-	7,6	-	-
		AB1	M12 $\times 100$	12,6	16,6	-	12,6	-	-
	- cracked	V-NEX 5.8	M12 $\times 195$	14,1	18,6	-	14,1	-	20,5
		HYB-FIX 5.8	M12 $\times 195$	19,3	25,5	-	19,3	-	28,0
		AB1	M12 $\times 100$	7,4	9,7	-	7,4	-	-
	- seismic	HYB-FIX 8.8	M12 $\times 195$	10,6	14,0	-	10,6	-	15,4
			M12 $\times 245$	13,1	17,3	-	13,1	-	19,0

NOTES:

${ }^{(1)}$ V-NEX chemical anchor according to ETA 20/0363.
${ }^{(2)}$ Mechanical anchor AB1 according to ETA 17/0481.
${ }^{(3)}$ HYB-FIX chemical anchor according to ETA 20/1285. The gap installation must be carried out with only chemical anchors and pre-cut INA threaded rod or MGS to be cut to size.

anchor type		$\begin{gathered} \mathrm{h}_{\mathrm{ef}} \\ {[\mathrm{~mm}]} \end{gathered}$	$h_{\text {nom }}$ [mm]	$\begin{gathered} \mathrm{h}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d}_{0} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \mathrm{h}_{\text {min }} \\ & {[\mathrm{mm}]} \end{aligned}$
type	$\varnothing \times \mathrm{L}$ [mm]					
V-NEX 5.8	M12 $\times 195$	170	170	175	14	200
HYB-FIX 5.8	M12 $\times 195$	170	170	175	14	200
HYB-FIX 8.8	M12 $\times 195$	170	170	175		200
	M12 $\times 245$	210	210	215		250
SKR-CE	12×90	64	87	110	10	200
AB1	M12 $\times 100$	70	80	85	14	200

Pre-cut INA class 5.8 / 8.8 threaded rod, including nut and washer.
For more information, see the data sheet available at www.rothoblaas.com.
Concrete-side strength values were calculated assuming a $t_{\text {fix }}$ thickness of 3 mm for all angle brackets.

DIMENSIONING OF ALTERNATIVE ANCHORS

Fastening elements to the concrete through anchors not listed in the table, shall be verified according to the load acting on the anchors, which can be evaluated through the $k_{t / /}$ coefficients. The axial load acting on the anchor can be obtained as follows:
$F_{\text {bolt//,d }}=k_{\mathrm{t} / /} \cdot F_{1, d}$
$k_{t / /} \quad$ coefficient of eccentricity
$F_{1, d} \quad$ axial load on the WKR angle bracket

The anchor check is satisfied if the design tensile strength, obtained considering the boundary effects, is greater than the design external load: $R_{\text {bolt } / /, \mathrm{d}} \geq \mathrm{F}_{\text {bolt } / / \mathrm{d}}$.

INSTALLATION WITHOUT GAP

CODE	configuration	$\mathbf{k}_{\mathbf{t} / /}$
WKR9530	pattern $1-2$	1,05
WKR13535	pattern $1-2$	1,05
WKR28535	pattern 2-3	1,10
	pattern $1-4$	1,45

INSTALLATION WITH GAP

CODE	configuration	$\mathbf{k}_{\mathbf{t} / /}$
WKR9530	pattern 1	
WKR13535	pattern 1	1,00
WKR28535	pattern 2	1,00

NOTES:
${ }^{(1)}$ Valid for the strength values shown in the table.

CALCULATION EXAMPLES: DETERMINING RESISTANCE $\mathbf{R}_{1 \mathrm{~d}}$

TIMBER-TO-CONCRETE | INSTALLATION WITH GAP

Uncracked concrete
V-NEX anchor M12 $\times 195$ (5.8 steel class)

STRUCTURAL VALUES | TENSILE JOINT F ${ }_{1}$ |TIMBER-TO-TIMBER

TIMBER STRENGTH

CODE	configuration	holes fastening $\varnothing 5$			$\mathrm{R}_{1, \mathrm{k} \text { timber }}{ }^{(1)}$	$\mathrm{K}_{1 \text {,ser }}$ [$\mathrm{kN} / \mathrm{mm}$]
		type	$\begin{aligned} & \varnothing \times L \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p c s]} \end{gathered}$		
WKR9530	pattern 2	LBA nails	$\varnothing 4,0 \times 60$	6	15,0	$\mathrm{R}_{1, \mathrm{k} \text { timber }} / 4$
		SBL screws	$\varnothing 5,0 \times 50$		13,3	
WKR13535	pattern 2	LBA nails	$\varnothing 4,0 \times 60$	11	28,3	
		SBL screws	$\varnothing 5,0 \times 50$		24,6	
WKR28535	pattern 3	LBA nails	$\varnothing 4,0 \times 60$	22	57.6	
		SBL screws	$\varnothing 5,0 \times 50$		49,3	

NOTES:
${ }^{(1)}$ Installation with nails and screws of shorter length than proposed in the table is possible. In this case, the bearing capacity values $\mathrm{R}_{1, k}$ timber must be multiplied by the following reductive factor k_{F} :

- for nails
$k_{F}=\min \left\{\frac{F_{v, \text { short }, R k}}{2,66 \mathrm{kN}} ; \frac{F_{a x, \text { short, }, \mathrm{Rk}}}{1,28 \mathrm{kN}}\right\}$
- for screws
$k_{F}=\min \left\{\frac{F_{v, \text { short }, R k}}{2,25 \mathrm{kN}} ; \frac{F_{a x, \text { short }, R k}}{2,63 \mathrm{kN}}\right\}$
$F_{V, \text { short,Rk }}=$ characteristic shear strength of the nail or screw
$F_{a x, \text { short }, R k}=$ characteristic withdrawal strength of the nail or screw

STRENGTH ON STEEL SIDE

connector	WKR	$\mathrm{R}_{1, \mathrm{k} \text { screw，head }}{ }^{(*)}$	
		［kN］	$\gamma_{\text {steel }}$
VGS $\varnothing 11$＋SHT10	WKR9530／WKR13535／WKR285135	$\mathrm{R}_{\text {tens，}} \mathrm{k}$	$\gamma_{\text {M2 }}$
VGS $\varnothing 13$＋HUS12			
HBS PLATE Ø10	WKR9530	20，0	
	WKR13535／WKR285135	21，0	
HBS PLATE Ø12	WKR9530	27，0	
	WKR13535／WKR285135	29，0	

${ }^{(*)}$ The values in the table refer to a punching shear failure of the connector in the horizontal flange．

STRENGTH ON ANCHOR SYSTEM SIDE
Strength values of some of the possible fastening solutions．

CODE	configuration	$k_{\text {t／／}}$	holes fastening Ø14	
			type ${ }^{(1)}$	$\mathrm{R}_{1, \mathrm{k}, \text { screw,ax }}$ ［kN］
WKR9530	pattern 2	1，05	$\begin{aligned} & \text { HBSP } \varnothing 10 \times 180 \\ & \text { HBSP } \varnothing 10 \times 140 \\ & \text { HBSP } \varnothing 12 \times 200 \end{aligned}$	$\begin{aligned} & 18,9 \\ & 13,9 \\ & 24,2 \end{aligned}$
WKR13535	pattern 2	1，05	$\begin{gathered} \text { HBSP Ø12 } \times 140 \\ \text { VGS } \varnothing 11 \times 200+\text { SHT10 } \end{gathered}$	$\begin{aligned} & 16,7 \\ & 26,4 \end{aligned}$
WKR28535	pattern 3	1，10	VGS $\varnothing 11 \times 150+$ SHT10 VGS $\varnothing 13 \times 200+$ HUS12 VGS $\varnothing 13 \times 150+$ HUS12	$\begin{aligned} & 19,5 \\ & 31,2 \\ & 23,0 \end{aligned}$

CALCULATION EXAMPLES：DETERMINING RESISTANCE R1d

TIMBER－TO－TIMBER

PROJECT DATA
Service class $=1$
Load duration $=$ instantaneous
CONNECTOR
WKR9530
Configuration $=$ Pattern 2
Fixing on timber $=$ LBA－HT nails $4 \times 60 \mathrm{~mm}$
SCREW SELECTION
HBS PLATE $=10 \times 140 \mathrm{~mm}$
Pre－drilling hole $=$ no

EN 1995：2014
$k_{\text {mod }}=1,1$
$\gamma_{M}=1,3$
$\gamma_{M 2}=1,25$
$\mathrm{k}_{\mathrm{t} / /}=1,05$
$R_{1, k, \text { timber }}=15,0 \mathrm{kN}$
$R_{1, k, \text { screw，head }}=20,0 \mathrm{kN}$
$R_{1, k, \text { screw，ax }}=13,9 \mathrm{kN}$
$R_{1, d}=11,2 \mathrm{kN}$

NOTES：

${ }^{(1)}$ If there are design requirements such as F_{1} stresses of different amounts，or depending on the thickness of the floor slab，it is possible to use $\varnothing 11$ and $\varnothing 13$ VGS screws with SHT10 and HUS12 washers and $\varnothing 10$ and $\varnothing 12$ HBS PLATE screws of different lengths than those proposed in the table．

NOTES:

${ }^{(1)}$ Installation with nails and screws of shorter length than proposed in the table is possible. In this case, the bearing capacity values $R_{4, k}$ timber and $R_{5, k}$ timber must be multiplied by the following reductive factor k_{F} :

- for nails
$k_{F}=\min \left\{\frac{F_{v, \text { short }, R k}}{2,66 \mathrm{kN}} ; \frac{F_{a x, \text { short,Rk }}}{1,28 \mathrm{kN}}\right\}$
- for screws
$k_{F}=\min \left\{\frac{F_{v, \text { short } R k}}{2,25 \mathrm{kN}} ; \frac{F_{a x, \text { short }, R k}}{2,63 \mathrm{kN}}\right\}$
$F_{V, \text { short,Rk }}=$ characteristic shear strength of the nail or screw
$F_{a x, \text { short,Rk }}=$ characteristic withdrawal strength of the nail or screw
- In the case of $F_{5, E d}$ stress, it is required to verify for the simultaneous shear action on the $F_{V, E d}$ anchor and the additional extraction component $F_{a x, E d}$:
$F_{a x, E d}=\frac{F_{5, E d} \cdot l_{B L}}{25 \mathrm{~mm}}$
$I_{B L}=$ distance between the last row of at least two connectors and the bearing surface
- The $R_{4, k \text { timber }}$ resistance is limited by the lateral $R_{v, k}$ resistance of the base connector.
- Refer to ETA-22/0089 for $K_{4, \text { ser }}$ stiffness values in timber-to-concrete configuration.

CODE	configuration	holes fastening Ø5			$\begin{gathered} \mathrm{R}_{4, \mathrm{k} \text { timber }}{ }^{(1)} \\ {[\mathrm{kN}]} \end{gathered}$	$\begin{gathered} \mathrm{R}_{5, \mathrm{k} \text { timber }}{ }^{(1)} \\ {[\mathrm{kN}]} \end{gathered}$	$\begin{gathered} \mathrm{l}_{\mathrm{BL}} \\ {[\mathrm{~mm}]} \end{gathered}$
		type	$\varnothing \times L$ [mm]	$\begin{gathered} \mathrm{n}_{\mathrm{v}} \\ {[\mathrm{pcs}]} \end{gathered}$			
WKR9530	pattern ${ }^{2}$	LBA nails	$\varnothing 4,0 \times 60$	6	14,7	2,6	70,0
		SBL screws	$\varnothing 5,0 \times 50$		14,1	3,4	
WKR13535	pattern 2	LBA nails	$\varnothing 4,0 \times 60$	11	18,3	2,6	
		SBL screws	$\varnothing 5,0 \times 50$		17,2	3,6	

NOTES:

${ }^{(1)}$ Installation with nails and screws of shorter length than proposed in the table is possible. In this case, the bearing capacity values $R_{4, k}$ timber ${ }^{\text {and }} \mathrm{R}_{5, k}$ timber ${ }^{\text {must be }}$ multiplied by the following reductive factor k_{F} :

- for nails
$k_{F}=\min \left\{\frac{F_{v, \text { short,Rk }}}{2,66 \mathrm{kN}} ; \frac{F_{a x, \text { short,Rk }}}{1,28 \mathrm{kN}}\right\}$
- for screws
$k_{F}=\min \left\{\frac{F_{v, \text { short }, R k}}{2,25 \mathrm{kN}} ; \frac{F_{a x, \text { short,Rk }}}{2,63 \mathrm{kN}}\right\}$
$F_{v, \text { short }, R_{k}}=$ characteristic shear strength of the nail or screw
$F_{a x, s h o r t, R k}=$ characteristic withdrawal strength of the nail or screw
- In the case of $F_{5, E d}$ stress, it is required to verify for the simultaneous shear action on the $F_{V, E d}$ anchor and the additional extraction component $F_{a x, E d}$:
$F_{a x, E d}=\frac{F_{5, E d} \cdot l_{B L}}{25 \mathrm{~mm}}$
$l_{B L}=$ distance between the last row of at least two connectors and the bearing surface
- The $R_{4, k \text { timber }}$ resistance is limited by the lateral $R_{v, k}$ resistance of the base connector.
- Refer to ETA-22/0089 for $\mathrm{K}_{4, \text { ser }}$ stiffness values in timber-to-timber configuration.

GENERAL PRINCIPLES:

- Characteristic values are consistent with EN 1995-1-1 and in accordance with ETA-22/0089. The design values of the anchors for concrete are calculated in accordance with the respective European Technical Assessments. The connection design strength values are obtained from the values on the table as follows:
- timber-to-concrete installation
$R_{d}=\min \left\{\begin{array}{l}\frac{R_{k, \text { timber }} \cdot k_{\text {mod }}}{\gamma_{M}} \\ \frac{R_{k \text { bolt, head }}}{\gamma_{M 2}} \\ R_{d, \text { concrete }}\end{array}\right.$
- timber-to- timber installation
$R_{d}=\min \left\{\begin{array}{l}\frac{R_{k, \text { timber }} \cdot k_{\text {mod }}}{\gamma_{M}} \\ \frac{R_{k, s c r e w, a x}}{k_{t / /}} \cdot \frac{k_{\text {mod }}}{\gamma_{M}} \\ \frac{R_{k, \text { screw, head }}}{\gamma_{M 2}}\end{array}\right.$
- Dimensioning and verification of timber and concrete elements must be carried out separately. Verify that there are no brittle fractures before reaching the connection strength.
- Structural elements in timber, to which the connection devices are fastened, must be prevented from rotating
- For the calculation process a timber characteristic density $\rho_{k}=350 \mathrm{~kg} / \mathrm{m}^{3}$ has been considered. For higher \mathbb{Q}_{k} values, the strength on timber side can be converted by the $\mathrm{k}_{\text {dens }}$ value:
$k_{\text {dens }}=\left(\frac{\rho_{k}}{350}\right)^{0,5}$ for $350 \mathrm{~kg} / \mathrm{m}^{3} \leq \rho_{k} \leq 420 \mathrm{~kg} / \mathrm{m}^{3}$

$$
k_{\text {dens }}=\left(\frac{\rho_{k}}{350}\right)^{0,5} \text { for LVL with } \rho_{k} \leq 500 \mathrm{~kg} / \mathrm{m}^{3}
$$

- In the calculation phase, a strength class of $C 25 / 30$ concrete with thin reinforcement was considered, in the absence of spacing and distances from the edge and minimum thickness indicated in the tables listing the installation parameters of the anchors used.
- The anchors seismic design was carried out in performance category C2, without ductility requirements on anchors (option a2) elastic design according to EN 1992-4, with $a_{\text {sus }}=0,6$. For chemical anchors it is assumed that the annular space between the anchor and the plate hole is filled ($a_{g a p}=1$).

