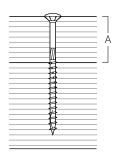


BFO


ROUND-HEAD SCREW AND REINFORCED SHANK

- Countersunk teardrop shaped head with curved surface for a pleasant look and firm grip with the bit
- The increased shank diameter with high torsional strength for a strong, safe screwing even in high density woods
- In A2 | AISI305 stainless steel, it is suitable for service classes 1-2-3
- It can be used without pre-drill, in woods having a maximum density of 550 kg/m³

MATERIAL: A2 | AISI305 austenitic stainless steel

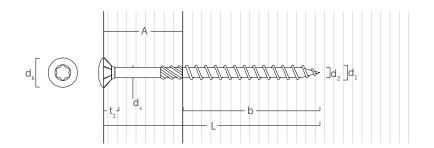
A maximum fastening thickness

d ₁	d _K	CODE	L	b	Α	pcs
[mm] [mm]			[mm] [mm]		[mm]	
	8,00	BFO550	50	30	20	200
5 TX 25		BFO560	60	36	24	200
		BFO570	70	42	28	100

BFO BUCKET

SCREWS IN BUCKET 1000

- Practical version with 1000 pieces per package
- Packaging that guarantees durability even in rainy conditions
- PET plastic box, durable, impact-resistant and reusable



d ₁ [mm]	d _K [mm]	CODE	L [mm]	b [mm]	A [mm]	pcs
5 TX 25	8,00	BFOBUC550	50	30	20	1000
		BFOBUC560	60	36	24	1000

GEOMETRY AND MECHANICAL CHARACTERISTICS

nominal diameter	d ₁	[mm]	5,3
head diameter	d _K	[mm]	8,00
thread diameter	d ₂	[mm]	3,90
shank diameter	d _S	[mm]	4,10
head thickness	t ₁	[mm]	3,65
pre-drilling hole diameter ⁽¹⁾	d _V	[mm]	3,50
characteristic yield moment	$M_{y,k}$	[Nm]	9,7
characteristic withdrawal-resistance parameter ⁽²⁾	f _{ax,k}	[N/mm ²]	16,62
characteristic head-pull-through parameter ⁽²⁾	f _{head,k}	[N/mm ²]	21,44
characteristic tensile strength	f _{tens,k}	[kN]	7,35

⁽¹⁾ For high density materials, pre-bored holes are recommended based on the wood species.

STRUCTURAL VALUES

				SHE	TENSION		
geometry				timber-to-timber without pre-drilling hole timber-to-timber with pre-drilling h		thread withdrawal ⁽¹⁾ head pull-throu	
	A		A			1	
d ₁	L	b	Α	R _{V,k}	R _{V,k}	R _{ax,k}	$R_{head,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
	50	30	20	1,39	1,80	2,88	1,59
5	60	36	30	1,55	2,08	3,46	1,59
	70	42	40	1,68	2,14	4,04	1,59

NOTES

(1) The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b. (2) The axial resistance to head pull-through was calculated using timber elements.

GENERAL PRINCIPLES

- Characteristic values according to EN 1995:2014.
- Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

The coefficients γ_M and k_{mod} should be taken according to the current regulations used for the calculation. Mechanical strength values and screw geometry according to CE marking according to EN 14592. For the calculation process a timber characteristic density $\rho^k = 420 \text{ kg/m}^3$ has been considered. Values were calculated considering the threaded part as being completely inserted into the wood. Dimensioning and verification of timber and steel elements must be carried out separately.

 $^{^{(2)}}$ Associated density $\rho_a = 350 \text{ kg/m}^3$.